-
1
-
-
0346289757
-
Nonlinear schrödinger equations with steep potential well
-
Bartsch, T., Pankov, A., Wang, Z. Q.: Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 3, 549-569 (2001) Zbl 1076.35037 MR 1869104 (Pubitemid 33749625)
-
(2001)
Communications in Contemporary Mathematics
, vol.3
, Issue.4
, pp. 549-569
-
-
Bartsch, T.1
Pankov, A.2
Wang, Z.-Q.3
-
3
-
-
0034342136
-
Multiple positive solutions for a nonlinear Schrödinger equation
-
Zbl 0972.35145 MR 1762697
-
Bartsch, T., Wang, Z. Q.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51, 366-384 (2000) Zbl 0972.35145 MR 1762697
-
(2000)
Z. Angew. Math. Phys.
, vol.51
, pp. 366-384
-
-
Bartsch, T.1
Wang, Z.Q.2
-
4
-
-
0020591567
-
Nonlinear scalar field equations, I. Existence of a ground state
-
Zbl 0533.35029 MR 0695535
-
Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313-346 (1983) Zbl 0533.35029 MR 0695535
-
(1983)
Arch. Ration. Mech. Anal.
, vol.82
, pp. 313-346
-
-
Berestycki, H.1
Lions, P.-L.2
-
5
-
-
33745655598
-
Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials
-
Zbl pre05053360 MR 2239273
-
Byeon, J., Wang, Z. Q.: Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials. J. Eur. Math. Soc. 8, 217-228 (2006) Zbl pre05053360 MR 2239273
-
(2006)
J. Eur. Math. Soc.
, vol.8
, pp. 217-228
-
-
Byeon, J.1
Wang, Z.Q.2
-
6
-
-
27744540973
-
Some existence results of solutions for p-Laplacian
-
Zbl 1119.35320 MR 2032552
-
Chen, Z. H., Shen, Y. T., Yao, Y. X.: Some existence results of solutions for p-Laplacian. Acta Math. Sci. Ser. B 23, 487-496 (2003) Zbl 1119.35320 MR 2032552
-
(2003)
Acta Math. Sci. Ser. B
, vol.23
, pp. 487-496
-
-
Chen, Z.H.1
Shen, Y.T.2
Yao, Y.X.3
-
7
-
-
34347247449
-
Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential
-
Zbl pre02004935 MR 1989597
-
Clapp, M., Ding, Y. H.: Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential. Differential Integral Equations 16, 981-992 (2003) Zbl pre02004935 MR 1989597
-
(2003)
Differential Integral Equations
, vol.16
, pp. 981-992
-
-
Clapp, M.1
Ding, Y.H.2
-
9
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
Zbl 0844.35032 MR 1379196
-
Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations 4, 121-137 (1996) Zbl 0844.35032 MR 1379196
-
(1996)
Calc. Var. Partial Differential Equations
, vol.4
, pp. 121-137
-
-
Del Pino, M.1
Felmer, P.2
-
10
-
-
0141568995
-
Multiplicity of positive solutions of a nonlinear Schrödinger equation
-
Zbl 1038.35114 MR 2005933
-
Ding, Y. H., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math. 112, 109-135 (2003) Zbl 1038.35114 MR 2005933
-
(2003)
Manuscripta Math.
, vol.112
, pp. 109-135
-
-
Ding, Y.H.1
Tanaka, K.2
-
12
-
-
0036014242
-
Solutions of a nonlinear Schrödinger equation
-
Zbl 1004.35107 MR 1897867
-
de Figueiredo, D. G., Ding, Y. H.: Solutions of a nonlinear Schrödinger equation. Discrete Contin. Dynam. Systems 8, 563-584 (2002) Zbl 1004.35107 MR 1897867
-
(2002)
Discrete Contin. Dynam. Systems
, vol.8
, pp. 563-584
-
-
De Figueiredo, D.G.1
Ding, Y.H.2
-
13
-
-
0142011685
-
Multiple solutions for a Schrödinger type equation with an asymptotically linear term
-
Zbl pre02005480 MR 2060527
-
van Heerden, F. A.: Multiple solutions for a Schrödinger type equation with an asymptotically linear term. Nonlinear Anal. 55, 739-758 (2003) Zbl pre02005480 MR 2060527
-
(2003)
Nonlinear Anal.
, vol.55
, pp. 739-758
-
-
Van Heerden, F.A.1
-
14
-
-
0142103308
-
Schrödinger type equations with asymptotically linear nonlinearities
-
Zbl 1030.35067 MR 1947953
-
van Heerden, F. A., Wang, Z. Q.: Schrödinger type equations with asymptotically linear nonlinearities. Differential Integral Equations 16, 257-280 (2003) Zbl 1030.35067 MR 1947953
-
(2003)
Differential Integral Equations
, vol.16
, pp. 257-280
-
-
Van Heerden, F.A.1
Wang, Z.Q.2
-
17
-
-
7244258733
-
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
-
Zbl 1060.35012 MR 2094325
-
Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differential Equations 21, 287-318 (2004) Zbl 1060.35012 MR 2094325
-
(2004)
Calc. Var. Partial Differential Equations
, vol.21
, pp. 287-318
-
-
Jeanjean, L.1
Tanaka, K.2
-
18
-
-
22844456350
-
The existence of a positive solution to asymptotically linear scalar field equations
-
Zbl 0942.35075 MR 1742582
-
Li, G. B., Zhou, H. S.: The existence of a positive solution to asymptotically linear scalar field equations. Proc. Roy. Soc. Edinburgh Sect. A 130, 81-105 (2000) Zbl 0942.35075 MR 1742582
-
(2000)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.130
, pp. 81-105
-
-
Li, G.B.1
Zhou, H.S.2
-
19
-
-
33750184213
-
Ground states of nonlinear Schrödinger equations with potentials
-
Zbl 1111.35079 MR 2271695
-
Li, Y. Q., Wang, Z. Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 829-837 (2006) Zbl 1111.35079 MR 2271695
-
(2006)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.23
, pp. 829-837
-
-
Li, Y.Q.1
Wang, Z.Q.2
Zeng, J.3
-
20
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case. Parts 1 and 2
-
223-283, Zbl 0541.49009 (part 1), Zbl 0704.49004 (part 2) MR 0778970 (part 1), MR 0778974 (part 2)
-
Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Parts 1 and 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109-145 and 223-283 (1984) Zbl 0541.49009 (part 1), Zbl 0704.49004 (part 2) MR 0778970 (part 1), MR 0778974 (part 2)
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.-L.1
-
21
-
-
43049101969
-
Asymptotically linear Schrödinger equation with potential vanishing at infinity
-
doi:10.1016/j.jde.2008.01.006
-
Liu, C. Y., Wang, Z. P., Zhou, H. S.: Asymptotically linear Schrödinger equation with potential vanishing at infinity. J. Differential Equations 245, 201-222 (2008) doi:10.1016/j.jde.2008.01.006
-
(2008)
J. Differential Equations
, vol.245
, pp. 201-222
-
-
Liu, C.Y.1
Wang, Z.P.2
Zhou, H.S.3
-
22
-
-
18144416971
-
Nodal type bounded states of Schrödinger equations via invariant set and minimax methods
-
Zbl pre02189408 MR 2145254
-
Liu, Z. L., van Heerden, F. A., Wang, Z. Q.: Nodal type bounded states of Schrödinger equations via invariant set and minimax methods. J. Differential Equations 214, 358-390 (2005) Zbl pre02189408 MR 2145254
-
(2005)
J. Differential Equations
, vol.214
, pp. 358-390
-
-
Liu, Z.L.1
Van Heerden, F.A.2
Wang, Z.Q.3
-
23
-
-
33749629797
-
Compactness results for Schrödinger equations with asymptotically linear terms
-
Zbl pre05115328 MR 2287894
-
Liu, Z. L., Su, J. B., Weth, T.: Compactness results for Schrödinger equations with asymptotically linear terms. J. Differential Equations 231, 501-512 (2006) Zbl pre05115328 MR 2287894
-
(2006)
J. Differential Equations
, vol.231
, pp. 501-512
-
-
Liu, Z.L.1
Su, J.B.2
Weth, T.3
-
25
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
Zbl 0763.35087 MR 1162728
-
Rabinowitz, P. H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-290 (1992) Zbl 0763.35087 MR 1162728
-
(1992)
Z. Angew. Math. Phys.
, vol.43
, pp. 270-290
-
-
Rabinowitz, P.H.1
-
26
-
-
0002048972
-
A variation of the mountain pass lemma and applications
-
Zbl 0756.35032 MR 1149010
-
Schechter, M.: A variation of the mountain pass lemma and applications. J. London Math. Soc. 44, 491-502 (1991) Zbl 0756.35032 MR 1149010
-
(1991)
J. London Math. Soc.
, vol.44
, pp. 491-502
-
-
Schechter, M.1
-
27
-
-
0000540347
-
Existence of solitary waves in higher dimensions
-
Zbl 0356.35028 MR 0454365
-
Strauss, W. A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149-162 (1977) Zbl 0356.35028 MR 0454365
-
(1977)
Comm. Math. Phys.
, vol.55
, pp. 149-162
-
-
Strauss, W.A.1
-
29
-
-
0030291320
-
A variational problem related to self-trapping of an electromagnetic field
-
Zbl 0862.35123 MR 1414401
-
Stuart, C. A., Zhou, H. S.: A variational problem related to self-trapping of an electromagnetic field. Math. Methods Appl. Sci. 19, 1397-1407 (1996) Zbl 0862.35123 MR 1414401
-
(1996)
Math. Methods Appl. Sci.
, vol.19
, pp. 1397-1407
-
-
Stuart, C.A.1
Zhou, H.S.2
-
31
-
-
33646008597
-
Global branch of solutions for nonlinear Schrödinger equations with deepening potential well
-
Zbl pre05025086 MR 2223540
-
Stuart, C. A., Zhou, H. S.: Global branch of solutions for nonlinear Schrödinger equations with deepening potential well. Proc. London Math. Soc. 92, 655-681 (2006) Zbl pre05025086 MR 2223540
-
(2006)
Proc. London Math. Soc.
, vol.92
, pp. 655-681
-
-
Stuart, C.A.1
Zhou, H.S.2
-
32
-
-
26244440037
-
Positive eigenfunctions of a Schrödinger operator
-
Zbl 1095.35020 MR 2156662
-
Stuart, C. A., Zhou, H. S.: Positive eigenfunctions of a Schrödinger operator. J. London Math. Soc. 72, 429-441 (2005) Zbl 1095.35020 MR 2156662
-
(2005)
J. London Math. Soc.
, vol.72
, pp. 429-441
-
-
Stuart, C.A.1
Zhou, H.S.2
-
33
-
-
33947578945
-
Existence results for an indefinite unbounded perturbation of a resonant Schrödinger equation
-
Zbl 1122.35139 MR 2319918
-
Tehrani, H.: Existence results for an indefinite unbounded perturbation of a resonant Schrödinger equation. J. Differential Equations 236, 1-28 (2007) Zbl 1122.35139 MR 2319918
-
(2007)
J. Differential Equations
, vol.236
, pp. 1-28
-
-
Tehrani, H.1
-
35
-
-
0009238687
-
The concentration-compactness principle in nonlinear elliptic equations
-
Zbl 0702.35095 MR 1043058
-
Zhu, X. P., Cao, D. M.: The concentration-compactness principle in nonlinear elliptic equations. Acta Math. Sci. 9, 307-328 (1989) Zbl 0702.35095 MR 1043058
-
(1989)
Acta Math. Sci.
, vol.9
, pp. 307-328
-
-
Zhu, X.P.1
Cao, D.M.2
|