메뉴 건너뛰기




Volumn 249, Issue 10, 2010, Pages 2377-2396

Multiplicity and concentration of solutions for elliptic systems with vanishing potentials

Author keywords

Nonlinear Schr dinger systems; Positive solutions; Potential well

Indexed keywords


EID: 77956265293     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2010.08.002     Document Type: Article
Times cited : (28)

References (19)
  • 1
    • 36348990860 scopus 로고    scopus 로고
    • Standing waves of some coupled nonlinear Schrödinger equations
    • Ambrosetti A., Colorado E. Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 2007, 75:67-82.
    • (2007) J. Lond. Math. Soc. , vol.75 , pp. 67-82
    • Ambrosetti, A.1    Colorado, E.2
  • 2
    • 34548350707 scopus 로고
    • Dual variational methods in critical point theory and applications
    • Ambrosetti A., Rabinowitz P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14:349-381.
    • (1973) J. Funct. Anal. , vol.14 , pp. 349-381
    • Ambrosetti, A.1    Rabinowitz, P.H.2
  • 3
    • 0346289757 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with steep potential well
    • Bartsch T., Pankov A., Wang Z.-Q. Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 2001, 3:1-21.
    • (2001) Commun. Contemp. Math. , vol.3 , pp. 1-21
    • Bartsch, T.1    Pankov, A.2    Wang, Z.-Q.3
  • 4
    • 84937765118 scopus 로고
    • Existence and multiplicity results for some super-linear elliptic problems on RN
    • Bartsch T., Wang Z.-Q. Existence and multiplicity results for some super-linear elliptic problems on RN. Comm. Partial Differential Equations 1995, 20:1725-1741.
    • (1995) Comm. Partial Differential Equations , vol.20 , pp. 1725-1741
    • Bartsch, T.1    Wang, Z.-Q.2
  • 5
    • 0034342136 scopus 로고    scopus 로고
    • Multiple positive solutions for a nonlinear Schrödinger equation
    • Bartsch T., Wang Z.-Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 2000, 51:366-384.
    • (2000) Z. Angew. Math. Phys. , vol.51 , pp. 366-384
    • Bartsch, T.1    Wang, Z.-Q.2
  • 6
    • 84941275804 scopus 로고
    • A relation between pointwise convergence of functions and convergence of functionals
    • Brézis H., Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 1983, 88:486-490.
    • (1983) Proc. Amer. Math. Soc. , vol.88 , pp. 486-490
    • Brézis, H.1    Lieb, E.2
  • 8
    • 0030099736 scopus 로고    scopus 로고
    • A unified approach to a class of strongly indefinite functionals
    • Costa D.G., Magalhães C.A. A unified approach to a class of strongly indefinite functionals. J. Differential Equations 1996, 125:521-547.
    • (1996) J. Differential Equations , vol.125 , pp. 521-547
    • Costa, D.G.1    Magalhães, C.A.2
  • 10
    • 33846696338 scopus 로고    scopus 로고
    • The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents
    • Han P. The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents. Houston J. Math. 2006, 32:1241-1257.
    • (2006) Houston J. Math. , vol.32 , pp. 1241-1257
    • Han, P.1
  • 11
    • 33645996673 scopus 로고    scopus 로고
    • Multiplicity of solutions for resonant elliptic systems
    • Furtado M.F., de Paiva F.O.V. Multiplicity of solutions for resonant elliptic systems. J. Math. Anal. Appl. 2006, 319:435-449.
    • (2006) J. Math. Anal. Appl. , vol.319 , pp. 435-449
    • Furtado, M.F.1    de Paiva, F.O.V.2
  • 12
    • 0036381871 scopus 로고    scopus 로고
    • Existence and multiplicity results for some superlinear elliptic problems on RN
    • Furtado M.F., Maia L.A., Silva E.A.B. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm. Partial Differential Equations 2002, 27:1515-1536.
    • (2002) Comm. Partial Differential Equations , vol.27 , pp. 1515-1536
    • Furtado, M.F.1    Maia, L.A.2    Silva, E.A.B.3
  • 13
    • 33747158213 scopus 로고    scopus 로고
    • Positive solutions for a weakly coupled nonlinear Schrödinger system
    • Maia L.A., Montefusco E., Pellacci B. Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differential Equations 2006, 229:743-767.
    • (2006) J. Differential Equations , vol.229 , pp. 743-767
    • Maia, L.A.1    Montefusco, E.2    Pellacci, B.3
  • 15
    • 0001509567 scopus 로고
    • On steady-state solutions of a system of reaction-diffusion equations from biology
    • Lazer A.C., McKenna P. On steady-state solutions of a system of reaction-diffusion equations from biology. Nonlinear Anal. 1982, 6:523-530.
    • (1982) Nonlinear Anal. , vol.6 , pp. 523-530
    • Lazer, A.C.1    McKenna, P.2
  • 16
    • 0000105023 scopus 로고
    • A maximum principle for an elliptic system and applications to semilinear problems
    • De Figueiredo D.G., Mitidieri E. A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal. 1986, 17:836-849.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 836-849
    • De Figueiredo, D.G.1    Mitidieri, E.2
  • 17
    • 34249773823 scopus 로고
    • Existence and multiplicity of solutions for semilinear elliptic systems
    • Silva E.A.B. Existence and multiplicity of solutions for semilinear elliptic systems. Nonlinear Differential Equations Appl. 1994, 1:339-363.
    • (1994) Nonlinear Differential Equations Appl. , vol.1 , pp. 339-363
    • Silva, E.A.B.1
  • 18
    • 0347985205 scopus 로고    scopus 로고
    • Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
    • Silva E.A.B., Xavier M.S. Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 2003, 20:341-358.
    • (2003) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.20 , pp. 341-358
    • Silva, E.A.B.1    Xavier, M.S.2
  • 19
    • 0002932245 scopus 로고
    • Differential systems with strongly indefinite variational structure
    • Hulshof J., Vander Vorst R.C.A.M. Differential systems with strongly indefinite variational structure. J. Funct. Anal. 1983, 114:32-58.
    • (1983) J. Funct. Anal. , vol.114 , pp. 32-58
    • Hulshof, J.1    Vander Vorst, R.C.A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.