메뉴 건너뛰기




Volumn 33, Issue 1, 2013, Pages 7-26

Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential

Author keywords

Multibump solutions; Nonlinear Schr dinger equation; Potential well; Single bump standing waves; Variational methods

Indexed keywords


EID: 84867013861     PISSN: 10780947     EISSN: 15535231     Source Type: Journal    
DOI: 10.3934/dcds.2013.33.7     Document Type: Article
Times cited : (53)

References (12)
  • 3
    • 0034342136 scopus 로고    scopus 로고
    • Multiple positive solutions for a nonlinear Schrödinger equation
    • T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. angew. Math. Phys., 51 (2000), 366-384.
    • (2000) Z. angew. Math. Phys. , vol.51 , pp. 366-384
    • Bartsch, T.1    Wang, Z.Q.2
  • 4
    • 0346289757 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with steep potential well
    • T. Bartsch, A. Pankov and Z. Q.Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
    • (2001) Commun. Contemp. Math. , vol.3 , pp. 549-569
    • Bartsch, T.1    Pankov, A.2    Wang, Z.Q.3
  • 5
    • 0141568995 scopus 로고    scopus 로고
    • Multiplicity of positive solutions of a nonlinear Schrö dingerequation
    • Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödingerequation, Manuscripta Math., 112 (2003), 109-135.
    • (2003) Manuscripta Math. , vol.112 , pp. 109-135
    • Ding, Y.1    Tanaka, K.2
  • 6
    • 77955436115 scopus 로고    scopus 로고
    • Existence and number of solutions for a class of semilinearSchrö dinger equation
    • Y. Ding and A. Szulkin, Existence and number of solutions for a class of semilinearSchrödinger equation, Progr. Nonlin. Diff. Equ. Appl., 66 (2006), 221-231.
    • (2006) Progr. Nonlin. Diff. Equ. Appl. , vol.66 , pp. 221-231
    • Ding, Y.1    Szulkin, A.2
  • 8
    • 27844448598 scopus 로고    scopus 로고
    • Periodic nonlinear Schrödinger equation with application to photoniccrystals
    • A. Pankov, Periodic nonlinear Schrödinger equation with application to photoniccrystals, Milan J. Math., 73 (2005), 563-574.
    • (2005) Milan J. Math. , vol.73 , pp. 563-574
    • Pankov, A.1
  • 10
    • 77950659711 scopus 로고    scopus 로고
    • Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells
    • Y. Sato and K. Tanaka, Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells, Trans. Amer. Math. Soc., 361 (2009), 6205-6253.
    • (2009) Trans. Amer. Math. Soc. , vol.361 , pp. 6205-6253
    • Sato, Y.1    Tanaka, K.2
  • 11
    • 70350185404 scopus 로고    scopus 로고
    • Ground state solutions for some indefinite variational problems
    • A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
    • (2009) J. Funct. Anal. , vol.257 , pp. 3802-3822
    • Szulkin, A.1    Weth, T.2
  • 12
    • 74249120149 scopus 로고    scopus 로고
    • Positive solutions for nonlinear Schrödinger equations withdeepening potential well
    • Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations withdeepening potential well, J. Europ. Math. Soc., 11 (2009), 545-573.
    • (2009) J. Europ. Math. Soc. , vol.11 , pp. 545-573
    • Wang, Z.P.1    Zhou, H.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.