메뉴 건너뛰기




Volumn 93, Issue 1, 2010, Pages 1-40

Tower of bubbles for almost critical problems in general domains

Author keywords

Blowing up solution; Critical Sobolev exponent; Robin's function; Tower of bubbles

Indexed keywords


EID: 73049092939     PISSN: 00217824     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matpur.2009.08.001     Document Type: Article
Times cited : (70)

References (19)
  • 1
    • 84972498579 scopus 로고
    • Problèmes isopérimétriques et espaces de Sobolev
    • Aubin T. Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geometry 11 4 (1976) 573-598
    • (1976) J. Differential Geometry , vol.11 , Issue.4 , pp. 573-598
    • Aubin, T.1
  • 2
    • 0002327136 scopus 로고
    • A note on the Sobolev inequality
    • Bianchi E., and Egnell H. A note on the Sobolev inequality. J. Funct. Anal. 100 (1991) 18-24
    • (1991) J. Funct. Anal. , vol.100 , pp. 18-24
    • Bianchi, E.1    Egnell, H.2
  • 3
    • 84990613834 scopus 로고
    • Positive solutions of non-linear elliptic equations involving critical Sobolev exponents
    • Brezis H., and Nirenberg L. Positive solutions of non-linear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 4 (1983) 437-477
    • (1983) Comm. Pure Appl. Math. , vol.36 , Issue.4 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 4
    • 0001581738 scopus 로고
    • Asymptotics for elliptic equations involving critical growth
    • Partial Differential Equations and the Calculus of Variations, vol. I, Birkhäuser, Boston
    • Brezis H., and Peletier L.A. Asymptotics for elliptic equations involving critical growth. Partial Differential Equations and the Calculus of Variations, vol. I. Progr. Nonlinear Differential Equations Appl. vol. 1 (1989), Birkhäuser, Boston 149-192
    • (1989) Progr. Nonlinear Differential Equations Appl. , vol.1 , pp. 149-192
    • Brezis, H.1    Peletier, L.A.2
  • 5
    • 0042854704 scopus 로고    scopus 로고
    • "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem
    • del Pino M., Dolbeault J., and Musso M. "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differential Equations 193 2 (2003) 280-306
    • (2003) J. Differential Equations , vol.193 , Issue.2 , pp. 280-306
    • del Pino, M.1    Dolbeault, J.2    Musso, M.3
  • 6
    • 8644235096 scopus 로고    scopus 로고
    • The Brezis-Nirenberg problem near criticality in dimension 3
    • del Pino M., Dolbeault J., and Musso M. The Brezis-Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. (9) 83 12 (2004) 1405-1456
    • (2004) J. Math. Pures Appl. (9) , vol.83 , Issue.12 , pp. 1405-1456
    • del Pino, M.1    Dolbeault, J.2    Musso, M.3
  • 9
    • 0001613187 scopus 로고
    • Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
    • Floer A., and Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69 3 (1986) 397-408
    • (1986) J. Funct. Anal. , vol.69 , Issue.3 , pp. 397-408
    • Floer, A.1    Weinstein, A.2
  • 10
    • 14644431008 scopus 로고    scopus 로고
    • Bubble towers for supercritical semilinear elliptic equations
    • Ge Y., Jing R., and Pacard F. Bubble towers for supercritical semilinear elliptic equations. J. Funct. Anal. 221 2 (2005) 251-302
    • (2005) J. Funct. Anal. , vol.221 , Issue.2 , pp. 251-302
    • Ge, Y.1    Jing, R.2    Pacard, F.3
  • 11
    • 0038391417 scopus 로고    scopus 로고
    • On the nondegeneracy of the critical points of the Robin function in symmetric domains
    • Grossi M. On the nondegeneracy of the critical points of the Robin function in symmetric domains. C. R. Acad. Sci. Paris 335 (2002) 1-4
    • (2002) C. R. Acad. Sci. Paris , vol.335 , pp. 1-4
    • Grossi, M.1
  • 12
    • 84903853123 scopus 로고
    • Asymptotic approach to singular solutions for non-linear elliptic equations involving critical Sobolev exponent
    • Han Z.-C. Asymptotic approach to singular solutions for non-linear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 2 (1991) 159-174
    • (1991) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.8 , Issue.2 , pp. 159-174
    • Han, Z.-C.1
  • 13
    • 0000837833 scopus 로고    scopus 로고
    • Constant scalar curvature metrics with isolated singularities
    • Mazzeo R., and Pacard F. Constant scalar curvature metrics with isolated singularities. Duke Math. J. 99 3 (1999) 353-418
    • (1999) Duke Math. J. , vol.99 , Issue.3 , pp. 353-418
    • Mazzeo, R.1    Pacard, F.2
  • 15
    • 2442663646 scopus 로고    scopus 로고
    • Concentration phenomena in elliptic problems with critical and supercritical growth
    • Molle R., and Pistoia A. Concentration phenomena in elliptic problems with critical and supercritical growth. Adv. Differential Equations 8 5 (2003) 547-570
    • (2003) Adv. Differential Equations , vol.8 , Issue.5 , pp. 547-570
    • Molle, R.1    Pistoia, A.2
  • 16
    • 33947159050 scopus 로고    scopus 로고
    • Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
    • Pistoia A., and Weth T. Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 2 (2007) 325-340
    • (2007) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.24 , Issue.2 , pp. 325-340
    • Pistoia, A.1    Weth, T.2
  • 17
    • 0002403465 scopus 로고
    • Eigenfunctions of the equation Δ u + λ f (u) = 0
    • Pokhozhaev S.I. Eigenfunctions of the equation Δ u + λ f (u) = 0. Dokl. Akad. Nauk SSSR 165 (1965) 36-39
    • (1965) Dokl. Akad. Nauk SSSR , vol.165 , pp. 36-39
    • Pokhozhaev, S.I.1
  • 18
    • 0002944738 scopus 로고
    • The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent
    • Rey O. The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89 1 (1990) 1-52
    • (1990) J. Funct. Anal. , vol.89 , Issue.1 , pp. 1-52
    • Rey, O.1
  • 19
    • 34250392866 scopus 로고
    • Best constant in Sobolev inequality
    • Talenti G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (IV) 110 (1976) 353-372
    • (1976) Ann. Mat. Pura Appl. (IV) , vol.110 , pp. 353-372
    • Talenti, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.