메뉴 건너뛰기




Volumn 30, Issue 6, 2013, Pages 1027-1047

Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries

Author keywords

Finite dimensional reduction; Max min argument; Sign changing solutions; Slightly subcritical problem

Indexed keywords

BOUNDED DOMAIN; ELLIPTIC PROBLEM; FINITE-DIMENSIONAL REDUCTIONS; MAX-MIN; NEGATIVE BUBBLES; NODAL SOLUTIONS; SIGN-CHANGING SOLUTION; SLIGHTLY SUBCRITICAL PROBLEM;

EID: 84888641393     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anihpc.2013.01.001     Document Type: Article
Times cited : (23)

References (26)
  • 1
    • 84972498579 scopus 로고
    • Problèmes isopérimétriques et espaces de Sobolev
    • T. Aubin Problèmes isopérimétriques et espaces de Sobolev J. Differential Geom. 11 1976 573 598
    • (1976) J. Differential Geom. , vol.11 , pp. 573-598
    • Aubin, T.1
  • 2
    • 84990623267 scopus 로고
    • On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain
    • A. Bahri, and J.M. Coron On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain Comm. Pure Appl. Math. 41 1988 253 294
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 253-294
    • Bahri, A.1    Coron, J.M.2
  • 3
    • 0003007474 scopus 로고
    • On a variational problem with lack of compactness: The topological effect of the critical points at infinity
    • A. Bahri, Y. Li, and O. Rey On a variational problem with lack of compactness: The topological effect of the critical points at infinity Calc. Var. Partial Differential Equations 3 1995 67 93
    • (1995) Calc. Var. Partial Differential Equations , vol.3 , pp. 67-93
    • Bahri, A.1    Li, Y.2    Rey, O.3
  • 4
    • 0035922965 scopus 로고    scopus 로고
    • Critical point theory on partially ordered Hilbert spaces
    • T. Bartsch Critical point theory on partially ordered Hilbert spaces J. Funct. Anal. 186 2001 117 152
    • (2001) J. Funct. Anal. , vol.186 , pp. 117-152
    • Bartsch, T.1
  • 6
    • 33646504149 scopus 로고    scopus 로고
    • On the existence and the profile of nodal solutions of elliptic equations involving critical growth
    • T. Bartsch, A. Micheletti, and A. Pistoia On the existence and the profile of nodal solutions of elliptic equations involving critical growth Calc. Var. Partial Differential Equations 26 2006 265 282
    • (2006) Calc. Var. Partial Differential Equations , vol.26 , pp. 265-282
    • Bartsch, T.1    Micheletti, A.2    Pistoia, A.3
  • 7
    • 1642367059 scopus 로고    scopus 로고
    • A note on additional properties of sign changing solutions to superlinear elliptic equations
    • T. Bartsch, and T. Weth A note on additional properties of sign changing solutions to superlinear elliptic equations Topol. Methods Nonlinear Anal. 22 2003 1 14
    • (2003) Topol. Methods Nonlinear Anal. , vol.22 , pp. 1-14
    • Bartsch, T.1    Weth, T.2
  • 8
    • 34547664765 scopus 로고    scopus 로고
    • Classification of low energy sign-changing solutions of an almost critical problem
    • M. Ben Ayed, K. El Mehdi, and F. Pacella Classification of low energy sign-changing solutions of an almost critical problem J. Funct. Anal. 50 2007 347 373
    • (2007) J. Funct. Anal. , vol.50 , pp. 347-373
    • Ben Ayed, M.1    El Mehdi, K.2    Pacella, F.3
  • 9
    • 0001581738 scopus 로고
    • Asymptotics for elliptic equations involving critical growth
    • Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, MA
    • H. Brézis, and L.A. Peletier Asymptotics for elliptic equations involving critical growth Partial Differential Equations and the Calculus of Variations, vol. I Progr. Nonlinear Differential Equations Appl. vol. 1 1989 Birkhäuser Boston, MA 149 192
    • (1989) Partial Differential Equations and the Calculus of Variations, Vol. i , vol.1 , pp. 149-192
    • Brézis, H.1    Peletier, L.A.2
  • 10
    • 84990617031 scopus 로고
    • Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth
    • L. Caffarelli, B. Gidas, and J. Spruck Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Comm. Pure Appl. Math. 42 1989 271 297
    • (1989) Comm. Pure Appl. Math. , vol.42 , pp. 271-297
    • Caffarelli, L.1    Gidas, B.2    Spruck, J.3
  • 11
    • 0036071443 scopus 로고    scopus 로고
    • On the strict concavity of the harmonic radius in dimension N ≥ 3
    • P. Cardaliaguet, and R. Tahraoui On the strict concavity of the harmonic radius in dimension N ≥ 3 J. Math. Pures Appl. 81 2002 223 240
    • (2002) J. Math. Pures Appl. , vol.81 , pp. 223-240
    • Cardaliaguet, P.1    Tahraoui, R.2
  • 12
    • 0038504721 scopus 로고    scopus 로고
    • Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries
    • M. Del Pino, P. Felmer, and M. Musso Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries Bull. Lond. Math. Soc. 35 2003 513 521
    • (2003) Bull. Lond. Math. Soc. , vol.35 , pp. 513-521
    • Del Pino, M.1    Felmer, P.2    Musso, M.3
  • 13
    • 0036647451 scopus 로고    scopus 로고
    • Multi-peak solutions for super-critical elliptic problems in domains with small holes
    • M. Del Pino, P. Felmer, and M. Musso Multi-peak solutions for super-critical elliptic problems in domains with small holes J. Differential Equations 182 2002 511 540
    • (2002) J. Differential Equations , vol.182 , pp. 511-540
    • Del Pino, M.1    Felmer, P.2    Musso, M.3
  • 15
    • 77952955238 scopus 로고    scopus 로고
    • Nonexistence of multi-bubble solutions to some elliptic equations on convex domains
    • M. Grossi, and F. Takahashi Nonexistence of multi-bubble solutions to some elliptic equations on convex domains J. Funct. Anal. 259 2010 904 917
    • (2010) J. Funct. Anal. , vol.259 , pp. 904-917
    • Grossi, M.1    Takahashi, F.2
  • 16
    • 0039462574 scopus 로고    scopus 로고
    • Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots
    • M. Flucher, and J. Wei Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots Manuscripta Math. 94 1997 337 346
    • (1997) Manuscripta Math. , vol.94 , pp. 337-346
    • Flucher, M.1    Wei, J.2
  • 17
    • 84903853123 scopus 로고
    • Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
    • Z.C. Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent Ann. Inst. H. Poincaré, Anal. Non Linéaire 8 1991 159 174
    • (1991) Ann. Inst. H. Poincaré, Anal. Non Linéaire , vol.8 , pp. 159-174
    • Han, Z.C.1
  • 18
    • 84980167932 scopus 로고
    • Remarks on some quasilinear elliptic equations
    • J. Kazdan, and F. Warner Remarks on some quasilinear elliptic equations Comm. Pure Appl. Math. 28 1975 567 597
    • (1975) Comm. Pure Appl. Math. , vol.28 , pp. 567-597
    • Kazdan, J.1    Warner, F.2
  • 19
    • 73049092939 scopus 로고    scopus 로고
    • Tower of bubbles for almost critical problems in general domains
    • M. Musso, and A. Pistoia Tower of bubbles for almost critical problems in general domains J. Math. Pures Appl. 93 2010 1 40
    • (2010) J. Math. Pures Appl. , vol.93 , pp. 1-40
    • Musso, M.1    Pistoia, A.2
  • 20
    • 35448939343 scopus 로고    scopus 로고
    • Multiplicity of solutions to the supercritical Bahri-Coron's problem in pierced domains
    • A. Pistoia, and O. Rey Multiplicity of solutions to the supercritical Bahri-Coron's problem in pierced domains Adv. Differential Equations 11 2006 647 666
    • (2006) Adv. Differential Equations , vol.11 , pp. 647-666
    • Pistoia, A.1    Rey, O.2
  • 21
    • 0000514956 scopus 로고
    • On the eigenfunctions of the equation Δu + λf (u) = 0
    • S.I. Pohoz̆aev On the eigenfunctions of the equation Δu + λf (u) = 0 Soviet Math. Dokl. 6 1965 1408 1411
    • (1965) Soviet Math. Dokl. , vol.6 , pp. 1408-1411
    • Pohozìaev, S.I.1
  • 22
    • 84972539471 scopus 로고
    • Blow-up points of solutions to elliptic equations with limiting nonlinearity
    • O. Rey Blow-up points of solutions to elliptic equations with limiting nonlinearity Differential Integral Equations 4 1991 1155 1167
    • (1991) Differential Integral Equations , vol.4 , pp. 1155-1167
    • Rey, O.1
  • 23
    • 0002944738 scopus 로고
    • The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
    • O. Rey The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent J. Funct. Anal. 89 1990 1 52
    • (1990) J. Funct. Anal. , vol.89 , pp. 1-52
    • Rey, O.1
  • 24
    • 0002432857 scopus 로고
    • Proof of two conjectures of H. Brezis and L.A. Peletier
    • O. Rey Proof of two conjectures of H. Brezis and L.A. Peletier Manuscripta Math. 65 1989 19 37
    • (1989) Manuscripta Math. , vol.65 , pp. 19-37
    • Rey, O.1
  • 25
    • 33947159050 scopus 로고    scopus 로고
    • Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
    • A. Pistoia, and T. Weth Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem Ann. Inst. H. Poincaré, Anal. Non Linéaire 24 2007 325 340
    • (2007) Ann. Inst. H. Poincaré, Anal. Non Linéaire , vol.24 , pp. 325-340
    • Pistoia, A.1    Weth, T.2
  • 26
    • 34250392866 scopus 로고
    • Best constant in Sobolev inequality
    • G. Talenti Best constant in Sobolev inequality Ann. Mat. Pura Appl. 110 1976 353 372
    • (1976) Ann. Mat. Pura Appl. , vol.110 , pp. 353-372
    • Talenti, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.