-
1
-
-
33751072936
-
Existence of multi-bump solutions for a class of quasilinear problems
-
Alves C.O. Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6 (2006) 491-509
-
(2006)
Adv. Nonlinear Stud.
, vol.6
, pp. 491-509
-
-
Alves, C.O.1
-
3
-
-
38949214421
-
-
N, Proc. Edinb. Math. Soc., in press
-
N, Proc. Edinb. Math. Soc., in press
-
-
-
-
7
-
-
0034342136
-
Multiple positive solutions for a nonlinear Schrödinger equation
-
Bartsch T., and Wang Z.Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384
-
(2000)
Z. Angew. Math. Phys.
, vol.51
, pp. 366-384
-
-
Bartsch, T.1
Wang, Z.Q.2
-
8
-
-
0346289757
-
Nonlinear Schrödinger equations with steep potential well
-
Bartsch T., Pankov A., and Wang Z.-Q. Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3 2001 (2000) 549-569
-
(2000)
Commun. Contemp. Math.
, vol.3
, Issue.2001
, pp. 549-569
-
-
Bartsch, T.1
Pankov, A.2
Wang, Z.-Q.3
-
10
-
-
3543002234
-
Positive solutions of a Schrödinger equations with critical nonlinearity
-
Clapp M., and Ding Y.H. Positive solutions of a Schrödinger equations with critical nonlinearity. Z. Angew. Math. Phys. 55 (2004) 592-605
-
(2004)
Z. Angew. Math. Phys.
, vol.55
, pp. 592-605
-
-
Clapp, M.1
Ding, Y.H.2
-
11
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
del Pino M., and Felmer P.L. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations 4 (1996) 121-137
-
(1996)
Calc. Var. Partial Differential Equations
, vol.4
, pp. 121-137
-
-
del Pino, M.1
Felmer, P.L.2
-
12
-
-
0141568995
-
Multiplicity of positive solutions of a nonlinear Schrödinger equation
-
Ding Y.H., and Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math. 112 (2003) 109-135
-
(2003)
Manuscripta Math.
, vol.112
, pp. 109-135
-
-
Ding, Y.H.1
Tanaka, K.2
-
14
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
Gui C. Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Partial Differential Equations 21 (1996) 787-820
-
(1996)
Comm. Partial Differential Equations
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
16
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
Séré E. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209 (1992) 27-42
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
|