-
1
-
-
84937765118
-
Existence and multiplicity results for some superlinear elliptic problems
-
T. BARTSCH and Z.-Q. WANG, Existence and multiplicity results for some superlinear elliptic problems, Commun. in P.D.E. 20(9&10) (1995), 1725-1742.
-
(1995)
Commun. in P.D.E
, vol.20
, Issue.9-10
, pp. 1725-1742
-
-
BARTSCH, T.1
WANG, Z.-Q.2
-
2
-
-
0034342136
-
Multiple positive solutions for a nonlinear Schrödinger equation
-
T. BARTSCH and Z.-Q. WANG, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000), 366-384.
-
(2000)
Z. Angew. Math. Phys
, vol.51
, pp. 366-384
-
-
BARTSCH, T.1
WANG, Z.-Q.2
-
3
-
-
0346289757
-
Nonlinear Schrödinger equar tions with steep potential well
-
T. BARTSCH, A. PANKOV and Z.-Q. WANG, Nonlinear Schrödinger equar tions with steep potential well, Commun. Contemp. Math. 3 (2000), 549-564.
-
(2000)
Commun. Contemp. Math
, vol.3
, pp. 549-564
-
-
BARTSCH, T.1
PANKOV, A.2
WANG, Z.-Q.3
-
4
-
-
0037882021
-
On the critical Neumann problem with weight in exterior domains
-
J. CHABROWSKI and B. RUF, On the critical Neumann problem with weight in exterior domains, Nonlin. Anal. 54 (2003), 143-163.
-
(2003)
Nonlin. Anal
, vol.54
, pp. 143-163
-
-
CHABROWSKI, J.1
RUF, B.2
-
5
-
-
3543002234
-
Positive solutions of a Schrödinger equation with critical nonlinearity
-
M. CLAPP and Y. H. DING, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys. 55 (2004), 592-605.
-
(2004)
Z. Angew. Math. Phys
, vol.55
, pp. 592-605
-
-
CLAPP, M.1
DING, Y.H.2
-
7
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations, The limit case
-
1&2, and
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana 1(1&2) (1985), 145-201 and 45-120.
-
(1985)
Revista Math. Iberoamericana
, vol.1
-
-
LIONS, P.L.1
-
8
-
-
0000023686
-
On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order
-
Russian
-
A. M. MOLCHANOV, On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order, Trudy Mosk. Matem. Obshchestva 2 (1953), 169-199 (Russian).
-
(1953)
Trudy Mosk. Matem. Obshchestva
, vol.2
, pp. 169-199
-
-
MOLCHANOV, A.M.1
-
9
-
-
0032017262
-
Semilinear Neumann problem in exterior domains
-
X.-B. PAN and X. WANG, Semilinear Neumann problem in exterior domains, Nonlin. Anal, TMA 31(7) (1998), 791-821.
-
(1998)
Nonlin. Anal, TMA
, vol.31
, Issue.7
, pp. 791-821
-
-
PAN, X.-B.1
WANG, X.2
-
10
-
-
84962985062
-
N) for a semilinear elliptic equation
-
N) for a semilinear elliptic equation, Proc. London Math. Soc. 3(57) (1988), 511-541.
-
(1988)
Proc. London Math. Soc
, vol.3
, Issue.57
, pp. 511-541
-
-
STUART, C.A.1
-
11
-
-
0142103308
-
Schrödinger type equations with asymptotically linear nonlinearities
-
F. A. VAN HEERDEN and Z.-Q. WANG, Schrödinger type equations with asymptotically linear nonlinearities, Diff. Int. Equations 16 (2003), 257-280.
-
(2003)
Diff. Int. Equations
, vol.16
, pp. 257-280
-
-
VAN HEERDEN, F.A.1
WANG, Z.-Q.2
-
12
-
-
0008983177
-
On the existence of positive solutions for semilinear Neumann problem in exterior domains
-
Z.-Q. WANG, On the existence of positive solutions for semilinear Neumann problem in exterior domains, Commun, in PDE 17(7&8) (1992), 1309-1325.
-
(1992)
Commun, in PDE
, vol.17
, Issue.7-8
, pp. 1309-1325
-
-
WANG, Z.-Q.1
|