-
1
-
-
84880568313
-
Multifunctional nanoparticles for drug delivery and molecular imaging
-
Bao G., et al. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15:253-282.
-
(2013)
Annu. Rev. Biomed. Eng.
, vol.15
, pp. 253-282
-
-
Bao, G.1
-
2
-
-
51049090204
-
Nanoparticle therapeutics: an emerging treatment modality for cancer
-
Davis M.E., et al. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7:771-782.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 771-782
-
-
Davis, M.E.1
-
4
-
-
77949632782
-
Frontiers in cancer nanomedicine: directing mass transport through biological barriers
-
Ferrari M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 2010, 28:181-188.
-
(2010)
Trends Biotechnol.
, vol.28
, pp. 181-188
-
-
Ferrari, M.1
-
6
-
-
77949762340
-
Targeting of drugs and nanoparticles to tumors
-
Ruoslahti E., et al. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 2010, 188:759-768.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 759-768
-
-
Ruoslahti, E.1
-
7
-
-
84919642689
-
Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment
-
Kanapathipillai M., et al. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev. 2014, 10.1016/j.addr.2014.05.005.
-
(2014)
Adv. Drug Deliv. Rev.
-
-
Kanapathipillai, M.1
-
8
-
-
40949127319
-
Therapeutic nanoparticles for drug delivery in cancer
-
Cho K., et al. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14:1310-1316.
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 1310-1316
-
-
Cho, K.1
-
9
-
-
84855961163
-
Nanoparticle delivery of cancer drugs
-
Wang A.Z., et al. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012, 63:185-198.
-
(2012)
Annu. Rev. Med.
, vol.63
, pp. 185-198
-
-
Wang, A.Z.1
-
10
-
-
84867643331
-
Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy
-
Ryu J.H., et al. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv. Drug Deliv. Rev. 2012, 64:1447-1458.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 1447-1458
-
-
Ryu, J.H.1
-
11
-
-
80054717080
-
Cancer theranostics with near-infrared light-activatable multimodal nanoparticles
-
Melancon M., et al. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 2011, 44:947-956.
-
(2011)
Acc. Chem. Res.
, vol.44
, pp. 947-956
-
-
Melancon, M.1
-
12
-
-
31444436840
-
Therapeutic possibilities of plasmonically heated gold nanoparticles
-
Pissuwan D., et al. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 2006, 24:62-67.
-
(2006)
Trends Biotechnol.
, vol.24
, pp. 62-67
-
-
Pissuwan, D.1
-
13
-
-
84886261520
-
Delivery materials for siRNA therapeutics
-
Kanasty R., et al. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12:967-977.
-
(2013)
Nat. Mater.
, vol.12
, pp. 967-977
-
-
Kanasty, R.1
-
14
-
-
84864140479
-
Engineering nano- and microparticles to tune immunity
-
Moon J.J., et al. Engineering nano- and microparticles to tune immunity. Adv. Mater. 2012, 24:3724-3746.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3724-3746
-
-
Moon, J.J.1
-
15
-
-
84870236985
-
Anticancer nanomedicine and tumor vascular permeability; where is the missing link?
-
Taurin S., et al. Anticancer nanomedicine and tumor vascular permeability; where is the missing link?. J. Control. Release 2012, 164:265-275.
-
(2012)
J. Control. Release
, vol.164
, pp. 265-275
-
-
Taurin, S.1
-
16
-
-
84895067794
-
A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors
-
Hauert S., et al. A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today 2013, 8:566-576.
-
(2013)
Nano Today
, vol.8
, pp. 566-576
-
-
Hauert, S.1
-
17
-
-
80052841941
-
A systems approach for tumor pharmacokinetics
-
Thurber G.M., Weissleder R. A systems approach for tumor pharmacokinetics. PLoS ONE 2011, 6:e24696.
-
(2011)
PLoS ONE
, vol.6
-
-
Thurber, G.M.1
Weissleder, R.2
-
18
-
-
84855577639
-
Practical theoretic guidance for the design of tumor-targeting agents
-
Wittrup K.D., et al. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012, 503:255-268.
-
(2012)
Methods Enzymol.
, vol.503
, pp. 255-268
-
-
Wittrup, K.D.1
-
21
-
-
58149127238
-
Collective cognition in animal groups
-
Couzin I.D. Collective cognition in animal groups. Trends Cogn. Sci. 2009, 13:36-43.
-
(2009)
Trends Cogn. Sci.
, vol.13
, pp. 36-43
-
-
Couzin, I.D.1
-
22
-
-
72049105806
-
Swarm intelligence in animals and humans
-
Krause J., et al. Swarm intelligence in animals and humans. Trends Ecol. Evol. 2010, 25:28-34.
-
(2010)
Trends Ecol. Evol.
, vol.25
, pp. 28-34
-
-
Krause, J.1
-
23
-
-
23944525907
-
Swarm robotics: from sources of inspiration to domains of application
-
Springer, E. Şahin, W.M. Spears (Eds.)
-
Şahin E. Swarm robotics: from sources of inspiration to domains of application. Swarm Robotics 2005, 10-20. Springer. E. Şahin, W.M. Spears (Eds.).
-
(2005)
Swarm Robotics
, pp. 10-20
-
-
Şahin, E.1
-
24
-
-
23944484068
-
Towards dependable swarms and a new discipline of swarm engineering
-
Springer, E. Şahin, W.M. Spears (Eds.)
-
Winfield A.F.T., et al. Towards dependable swarms and a new discipline of swarm engineering. Swarm Robotics 2005, 126-142. Springer. E. Şahin, W.M. Spears (Eds.).
-
(2005)
Swarm Robotics
, pp. 126-142
-
-
Winfield, A.F.T.1
-
25
-
-
84455169845
-
Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate
-
Hauert S., et al. Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. IEEE/RSJ International Conference on Intelligent Robots and Systems 2011, 5015-5020.
-
(2011)
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp. 5015-5020
-
-
Hauert, S.1
-
27
-
-
84893972168
-
Designing collective behavior in a termite-inspired robot construction team
-
Werfel J., et al. Designing collective behavior in a termite-inspired robot construction team. Science 2014, 343:754-758.
-
(2014)
Science
, vol.343
, pp. 754-758
-
-
Werfel, J.1
-
28
-
-
70349733106
-
PH-induced aggregation of gold nanoparticles for photothermal cancer therapy
-
Nam J., et al. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 2009, 131:13639-13645.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 13639-13645
-
-
Nam, J.1
-
29
-
-
77954920912
-
In vivo assembly of nanoparticle components to improve targeted cancer imaging
-
Perrault S.D., Chan W.C.W. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11194-11199.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11194-11199
-
-
Perrault, S.D.1
Chan, W.C.W.2
-
30
-
-
80054756400
-
Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics
-
Godin B., et al. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 2011, 44:979-989.
-
(2011)
Acc. Chem. Res.
, vol.44
, pp. 979-989
-
-
Godin, B.1
-
31
-
-
79952291790
-
Multistage nanoparticle delivery system for deep penetration into tumor tissue
-
Wong C., et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2426-2431.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2426-2431
-
-
Wong, C.1
-
32
-
-
84872176550
-
Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease
-
Kwong G.A., et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 2013, 31:63-70.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 63-70
-
-
Kwong, G.A.1
-
33
-
-
75749110220
-
Cooperative nanomaterial system to sensitize, target, and treat tumors
-
Park J-H., et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:981-986.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 981-986
-
-
Park, J.-H.1
-
34
-
-
79959518231
-
Nanoparticles that communicate in vivo to amplify tumour targeting
-
von Maltzahn G., et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 2011, 10:545-552.
-
(2011)
Nat. Mater.
, vol.10
, pp. 545-552
-
-
von Maltzahn, G.1
-
35
-
-
65549115157
-
Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment
-
Phan J.H., et al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 2009, 27:350-358.
-
(2009)
Trends Biotechnol.
, vol.27
, pp. 350-358
-
-
Phan, J.H.1
-
36
-
-
84869488700
-
"Targeting" nanoparticles: the constraints of physical laws and physical barriers
-
Florence A.T. "Targeting" nanoparticles: the constraints of physical laws and physical barriers. J. Control. Release 2012, 164:115-124.
-
(2012)
J. Control. Release
, vol.164
, pp. 115-124
-
-
Florence, A.T.1
-
37
-
-
80054757178
-
Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery
-
Abeylath S.C., et al. Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc. Chem. Res. 2011, 44:1009-1017.
-
(2011)
Acc. Chem. Res.
, vol.44
, pp. 1009-1017
-
-
Abeylath, S.C.1
-
38
-
-
84879412284
-
Future of the particle replication in nonwetting templates (PRINT) technology
-
Xu J., et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. Engl. 2013, 52:6580-6589.
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 6580-6589
-
-
Xu, J.1
-
39
-
-
52649129923
-
Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging
-
Vickerman V., et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 2008, 8:1468-1477.
-
(2008)
Lab Chip
, vol.8
, pp. 1468-1477
-
-
Vickerman, V.1
-
40
-
-
41649110649
-
Imaging in the era of molecular oncology
-
Weissleder R., Pittet M.J. Imaging in the era of molecular oncology. Nature 2008, 452:580-589.
-
(2008)
Nature
, vol.452
, pp. 580-589
-
-
Weissleder, R.1
Pittet, M.J.2
-
41
-
-
62849112168
-
Collective behavior in cancer cell populations
-
Deisboeck T.S., Couzin I.D. Collective behavior in cancer cell populations. Bioessays 2009, 31:190-197.
-
(2009)
Bioessays
, vol.31
, pp. 190-197
-
-
Deisboeck, T.S.1
Couzin, I.D.2
-
42
-
-
77958488277
-
Engineering the perfect (bacterial) cancer therapy
-
Forbes N.S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 2010, 10:785-794.
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 785-794
-
-
Forbes, N.S.1
-
43
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9:615-627.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
44
-
-
79960363229
-
More effective nanomedicines through particle design
-
Wang J., et al. More effective nanomedicines through particle design. Small 2011, 7:1919-1931.
-
(2011)
Small
, vol.7
, pp. 1919-1931
-
-
Wang, J.1
-
45
-
-
84859252945
-
Size matters: gold nanoparticles in targeted cancer drug delivery
-
Dreaden E.C., et al. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv. 2012, 3:457-478.
-
(2012)
Ther. Deliv.
, vol.3
, pp. 457-478
-
-
Dreaden, E.C.1
-
46
-
-
80053184892
-
Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers
-
Kievit F.M., Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 2011, 23:217-247.
-
(2011)
Adv. Mater.
, vol.23
, pp. 217-247
-
-
Kievit, F.M.1
Zhang, M.2
-
47
-
-
35148864458
-
Renal clearance of quantum dots
-
Choi H.S., et al. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25:1165-1170.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1165-1170
-
-
Choi, H.S.1
-
48
-
-
55949126429
-
Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats
-
Longmire M., et al. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 2008, 3:703-717.
-
(2008)
Nanomedicine (Lond.)
, vol.3
, pp. 703-717
-
-
Longmire, M.1
-
49
-
-
84873268296
-
The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo
-
Maeda H., et al. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2012, 65:71-79.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 71-79
-
-
Maeda, H.1
-
50
-
-
66449116301
-
Mediating tumor targeting efficiency of nanoparticles through design
-
Perrault S.D., et al. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9:1909-1915.
-
(2009)
Nano Lett.
, vol.9
, pp. 1909-1915
-
-
Perrault, S.D.1
-
51
-
-
81355147508
-
The effects of polymeric nanostructure shape on drug delivery
-
Venkataraman S., et al. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 2011, 63:1228-1246.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 1228-1246
-
-
Venkataraman, S.1
-
52
-
-
28844488494
-
Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles
-
Owens D.E., Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307:93-102.
-
(2006)
Int. J. Pharm.
, vol.307
, pp. 93-102
-
-
Owens, D.E.1
Peppas, N.A.2
-
53
-
-
84874169973
-
Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
Rodriguez P.L., et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971-975.
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
54
-
-
52649169324
-
Protease-triggered unveiling of bioactive nanoparticles
-
Harris T.J., et al. Protease-triggered unveiling of bioactive nanoparticles. Small 2008, 4:1307-1312.
-
(2008)
Small
, vol.4
, pp. 1307-1312
-
-
Harris, T.J.1
-
55
-
-
79959806796
-
Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia
-
Poon Z., et al. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 2011, 5:4284-4292.
-
(2011)
ACS Nano
, vol.5
, pp. 4284-4292
-
-
Poon, Z.1
-
56
-
-
38049165716
-
Sheddable coatings for long-circulating nanoparticles
-
Romberg B., et al. Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 2008, 25:55-71.
-
(2008)
Pharm. Res.
, vol.25
, pp. 55-71
-
-
Romberg, B.1
-
57
-
-
84858652159
-
Targeted polymeric therapeutic nanoparticles: design, development and clinical translation
-
Kamaly N., et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 2012, 41:2971-3010.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2971-3010
-
-
Kamaly, N.1
-
58
-
-
84864132047
-
Peptide targeted lipid nanoparticles for anticancer drug delivery
-
3710
-
Pearce T.R., et al. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv. Mater. 2012, 24:3803-3822. 3710.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3803-3822
-
-
Pearce, T.R.1
-
59
-
-
80052577148
-
Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer
-
Julien D.C., et al. Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer. MAbs 2011, 3:467-478.
-
(2011)
MAbs
, vol.3
, pp. 467-478
-
-
Julien, D.C.1
-
60
-
-
81355148433
-
Aptamer-conjugated nanomaterials and their applications
-
Yang L., et al. Aptamer-conjugated nanomaterials and their applications. Adv. Drug Deliv. Rev. 2011, 63:1361-1370.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 1361-1370
-
-
Yang, L.1
-
61
-
-
79959872019
-
Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles
-
Valencia P.M., et al. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011, 32:6226-6233.
-
(2011)
Biomaterials
, vol.32
, pp. 6226-6233
-
-
Valencia, P.M.1
-
62
-
-
79960094415
-
Advances in drug delivery
-
Timko B.P., et al. Advances in drug delivery. Annu. Rev. Mater. Res. 2011, 41:1-20.
-
(2011)
Annu. Rev. Mater. Res.
, vol.41
, pp. 1-20
-
-
Timko, B.P.1
-
63
-
-
84864125045
-
Peptides as targeting elements and tissue penetration devices for nanoparticles
-
Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 2012, 24:3747-3756.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3747-3756
-
-
Ruoslahti, E.1
-
64
-
-
23144456813
-
Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system
-
Sengupta S., et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005, 436:568-572.
-
(2005)
Nature
, vol.436
, pp. 568-572
-
-
Sengupta, S.1
-
65
-
-
84879977345
-
Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications
-
Ji T., et al. Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. Adv. Mater. 2013, 25:3508-3525.
-
(2013)
Adv. Mater.
, vol.25
, pp. 3508-3525
-
-
Ji, T.1
-
66
-
-
84861406720
-
Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities
-
Waite C., Roth C. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit. Rev. Biomed. Eng. 2012, 40:21-41.
-
(2012)
Crit. Rev. Biomed. Eng.
, vol.40
, pp. 21-41
-
-
Waite, C.1
Roth, C.2
-
67
-
-
84877945468
-
Immune system targeting by biodegradable nanoparticles for cancer vaccines
-
Silva J.M., et al. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 2013, 168:179-199.
-
(2013)
J. Control. Release
, vol.168
, pp. 179-199
-
-
Silva, J.M.1
-
68
-
-
84887009773
-
Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides
-
Hou K.K., et al. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano 2013, 7:8605-8615.
-
(2013)
ACS Nano
, vol.7
, pp. 8605-8615
-
-
Hou, K.K.1
-
69
-
-
84879238014
-
The pharmacological bases of the antiangiogenic activity of paclitaxel
-
Bocci G., et al. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis 2013, 16:481-492.
-
(2013)
Angiogenesis
, vol.16
, pp. 481-492
-
-
Bocci, G.1
-
70
-
-
42249095831
-
Increased nanoparticle penetration in collagenase-treated multicellular spheroids
-
Goodman T.T., et al. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int. J. Nanomed. 2007, 2:265-274.
-
(2007)
Int. J. Nanomed.
, vol.2
, pp. 265-274
-
-
Goodman, T.T.1
-
71
-
-
84871821241
-
Stimulus-responsive nanopreparations for tumor targeting
-
Zhu L., Torchilin V.P. Stimulus-responsive nanopreparations for tumor targeting. Integr. Biol. (Camb) 2013, 5:96-107.
-
(2013)
Integr. Biol. (Camb)
, vol.5
, pp. 96-107
-
-
Zhu, L.1
Torchilin, V.P.2
-
72
-
-
84870236064
-
Responsive polymeric delivery systems
-
Kost J., Langer R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 2012, 64:327-341.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 327-341
-
-
Kost, J.1
Langer, R.2
-
73
-
-
70450221930
-
Biodegradable polymeric nanoparticles based drug delivery systems
-
Kumari A., et al. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75:1-18.
-
(2010)
Colloids Surf. B Biointerfaces
, vol.75
, pp. 1-18
-
-
Kumari, A.1
-
74
-
-
84864138481
-
Hybrid nanoparticles for detection and treatment of cancer
-
Sailor M.J., Park J-H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 2012, 24:3779-3802.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3779-3802
-
-
Sailor, M.J.1
Park, J.-H.2
-
75
-
-
78649315943
-
To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
-
Danhier F., et al. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148:135-146.
-
(2010)
J. Control. Release
, vol.148
, pp. 135-146
-
-
Danhier, F.1
-
76
-
-
84887001117
-
Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis
-
Lin K., et al. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 2013, 7:9001-9009.
-
(2013)
ACS Nano
, vol.7
, pp. 9001-9009
-
-
Lin, K.1
-
77
-
-
77749297971
-
Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases
-
Olson E.S., et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4311-4316.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 4311-4316
-
-
Olson, E.S.1
-
78
-
-
79959298397
-
Cancer theranostics: the rise of targeted magnetic nanoparticles
-
Cole A.J., et al. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011, 29:323-332.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 323-332
-
-
Cole, A.J.1
-
79
-
-
36549075078
-
Remotely triggered release from magnetic nanoparticles
-
Derfus A.M., et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 2007, 19:3932-3936.
-
(2007)
Adv. Mater.
, vol.19
, pp. 3932-3936
-
-
Derfus, A.M.1
-
80
-
-
46749132642
-
Multifunctional magnetic nanoparticles for targeted imaging and therapy
-
McCarthy J.R., Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 2008, 60:1241-1251.
-
(2008)
Adv. Drug Deliv. Rev.
, vol.60
, pp. 1241-1251
-
-
McCarthy, J.R.1
Weissleder, R.2
-
81
-
-
84869767821
-
Ultrasound-enhanced drug delivery for cancer
-
Mo S., et al. Ultrasound-enhanced drug delivery for cancer. Exp. Opin. Drug Deliv. 2012, 9:1525-1538.
-
(2012)
Exp. Opin. Drug Deliv.
, vol.9
, pp. 1525-1538
-
-
Mo, S.1
-
82
-
-
84884969965
-
Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source
-
Bagley A.F., et al. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013, 7:8089-8097.
-
(2013)
ACS Nano
, vol.7
, pp. 8089-8097
-
-
Bagley, A.F.1
-
83
-
-
65949096862
-
Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas
-
von Maltzahn G., et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69:3892-3900.
-
(2009)
Cancer Res.
, vol.69
, pp. 3892-3900
-
-
von Maltzahn, G.1
-
84
-
-
84869103855
-
Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities
-
Cheng Z., et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338:903-910.
-
(2012)
Science
, vol.338
, pp. 903-910
-
-
Cheng, Z.1
-
85
-
-
84880930108
-
Nano-sized polymers and liposomes designed to deliver combination therapy for cancer
-
Eldar-Boock A., et al. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr. Opin. Biotechnol. 2013, 24:682-689.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 682-689
-
-
Eldar-Boock, A.1
-
86
-
-
70349978292
-
Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines
-
Greco F., Vicent M.J. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 2009, 61:1203-1213.
-
(2009)
Adv. Drug Deliv. Rev.
, vol.61
, pp. 1203-1213
-
-
Greco, F.1
Vicent, M.J.2
-
87
-
-
84876528747
-
PH-responsive assembly of gold nanoparticles and spatiotemporally concerted drug release for synergistic cancer therapy
-
Nam J., et al. pH-responsive assembly of gold nanoparticles and spatiotemporally concerted drug release for synergistic cancer therapy. ACS Nano 2013, 7:3388-3402.
-
(2013)
ACS Nano
, vol.7
, pp. 3388-3402
-
-
Nam, J.1
-
88
-
-
34249036719
-
Nanoparticle self-assembly gated by logical proteolytic triggers
-
von Maltzahn G., et al. Nanoparticle self-assembly gated by logical proteolytic triggers. J. Am. Chem. Soc. 2007, 129:6064-6065.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 6064-6065
-
-
von Maltzahn, G.1
-
89
-
-
46749123820
-
Porous silicon in drug delivery devices and materials
-
Anglin E.J., et al. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 2008, 60:1266-1277.
-
(2008)
Adv. Drug Deliv. Rev.
, vol.60
, pp. 1266-1277
-
-
Anglin, E.J.1
-
90
-
-
79551575238
-
Multi-stage delivery nano-particle systems for therapeutic applications
-
Serda R.E., et al. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim. Biophys. Acta 2011, 1810:317-329.
-
(2011)
Biochim. Biophys. Acta
, vol.1810
, pp. 317-329
-
-
Serda, R.E.1
-
91
-
-
77249098786
-
Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery
-
Park J-H., et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 2010, 22:880-885.
-
(2010)
Adv. Mater.
, vol.22
, pp. 880-885
-
-
Park, J.-H.1
-
92
-
-
77949572671
-
An integrated approach for the rational design of nanovectors for biomedical imaging and therapy
-
Godin B., et al. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv. Genet. 2010, 69:31-64.
-
(2010)
Adv. Genet.
, vol.69
, pp. 31-64
-
-
Godin, B.1
-
93
-
-
84867795473
-
Identification and characterization of receptor-specific peptides for siRNA delivery
-
Ren Y., et al. Identification and characterization of receptor-specific peptides for siRNA delivery. ACS Nano 2012, 6:8620-8631.
-
(2012)
ACS Nano
, vol.6
, pp. 8620-8631
-
-
Ren, Y.1
-
94
-
-
77955491294
-
Predicting protein structures with a multiplayer online game
-
Cooper S., et al. Predicting protein structures with a multiplayer online game. Nature 2010, 466:756-760.
-
(2010)
Nature
, vol.466
, pp. 756-760
-
-
Cooper, S.1
-
96
-
-
84862638401
-
Reductionism and complexity in nanoparticle-vectored drug targeting
-
Florence A.T. Reductionism and complexity in nanoparticle-vectored drug targeting. J. Control. Release 2012, 161:399-402.
-
(2012)
J. Control. Release
, vol.161
, pp. 399-402
-
-
Florence, A.T.1
-
97
-
-
33749839465
-
A combinatorial library of photocrosslinkable and degradable materials
-
Anderson D.G., et al. A combinatorial library of photocrosslinkable and degradable materials. Adv. Mater. 2006, 18:2614-2618.
-
(2006)
Adv. Mater.
, vol.18
, pp. 2614-2618
-
-
Anderson, D.G.1
-
98
-
-
47249155205
-
A combinatorial polymer library approach yields insight into nonviral gene delivery
-
Green J., et al. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 2008, 41:749-759.
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 749-759
-
-
Green, J.1
-
99
-
-
84891362991
-
Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
-
Valencia P.M., et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013, 7:10671-10680.
-
(2013)
ACS Nano
, vol.7
, pp. 10671-10680
-
-
Valencia, P.M.1
-
100
-
-
66249137759
-
Self-assembly of DNA into nanoscale three-dimensional shapes
-
Douglas S.M., et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459:414-418.
-
(2009)
Nature
, vol.459
, pp. 414-418
-
-
Douglas, S.M.1
-
101
-
-
84857335824
-
A logic-gated nanorobot for targeted transport of molecular payloads
-
Douglas S.M., et al. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335:831-834.
-
(2012)
Science
, vol.335
, pp. 831-834
-
-
Douglas, S.M.1
-
102
-
-
84897583533
-
Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT
-
Iinuma R., et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 2014, 344:65-69.
-
(2014)
Science
, vol.344
, pp. 65-69
-
-
Iinuma, R.1
-
103
-
-
73849093634
-
Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates
-
Maune H.T., et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 2010, 5:61-66.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 61-66
-
-
Maune, H.T.1
-
104
-
-
79953028000
-
Intravital microscopy as a tool to study drug delivery in preclinical studies
-
Amornphimoltham P., et al. Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv. Drug Deliv. Rev. 2011, 63:119-128.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 119-128
-
-
Amornphimoltham, P.1
-
105
-
-
77955600995
-
Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles
-
Hak S., et al. Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 2010, 13:113-130.
-
(2010)
Angiogenesis
, vol.13
, pp. 113-130
-
-
Hak, S.1
-
106
-
-
84887293373
-
Tumour-on-a-chip provides an optical window into nanoparticle tissue transport
-
Albanese A., et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun. 2013, 4:2718.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2718
-
-
Albanese, A.1
-
108
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller J.S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11:768-774.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
|