메뉴 건너뛰기




Volumn 109, Issue 1, 2011, Pages 22-33

NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems

Author keywords

Chemometric quantification models; Evolving clustering method; Local linear predictors; NIR spectroscopy; PEA production; Takagi Sugeno fuzzy systems; Wavelength reduction

Indexed keywords

POLYETHER DERIVATIVE; POLYETHERACRYLAT; UNCLASSIFIED DRUG;

EID: 80053629374     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.07.004     Document Type: Article
Times cited : (27)

References (38)
  • 4
    • 1942518934 scopus 로고    scopus 로고
    • Partial least squares regression for analysis of spectroscopic data
    • Reeves J., Delwiche S. Partial least squares regression for analysis of spectroscopic data. Journal of Near Infrared Spectroscopy 2003, 11(6):415-431.
    • (2003) Journal of Near Infrared Spectroscopy , vol.11 , Issue.6 , pp. 415-431
    • Reeves, J.1    Delwiche, S.2
  • 7
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao X., Bian X., Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 2010, 666(1-2):32-37.
    • (2010) Analytica Chimica Acta , vol.666 , Issue.1-2 , pp. 32-37
    • Shao, X.1    Bian, X.2    Cai, W.3
  • 8
    • 67349265555 scopus 로고    scopus 로고
    • Recursive multimodel partial least squares estimation of mineral flotation slurry contents using optical reflectance spectra
    • Haavisto O., Hyotyniemi H. Recursive multimodel partial least squares estimation of mineral flotation slurry contents using optical reflectance spectra. Analytica Chimica Acta 2009, 642:102-109.
    • (2009) Analytica Chimica Acta , vol.642 , pp. 102-109
    • Haavisto, O.1    Hyotyniemi, H.2
  • 10
    • 0002026903 scopus 로고
    • Locally weighted regression in diffuse near-infrared transmittance spectroscopy
    • Naes T., Isaksson T. Locally weighted regression in diffuse near-infrared transmittance spectroscopy. Applied Spectroscopy 1992, 46(1):34-43.
    • (1992) Applied Spectroscopy , vol.46 , Issue.1 , pp. 34-43
    • Naes, T.1    Isaksson, T.2
  • 12
    • 39149085365 scopus 로고    scopus 로고
    • Artificial neural networks in chemometrics: history, examples and perspectives
    • Marini F., Buccia R., Magrì A., Magrì A. Artificial neural networks in chemometrics: history, examples and perspectives. Micrchemical Journal 2008, 88(2):178-185.
    • (2008) Micrchemical Journal , vol.88 , Issue.2 , pp. 178-185
    • Marini, F.1    Buccia, R.2    Magrì, A.3    Magrì, A.4
  • 13
    • 33947311085 scopus 로고    scopus 로고
    • Non-linear regression methods in NIRS quantitative analysis
    • Pérez-Marín D., Garrido-Varo A., Guerrero J. Non-linear regression methods in NIRS quantitative analysis. Talanta 2007, 72(1):28-42.
    • (2007) Talanta , vol.72 , Issue.1 , pp. 28-42
    • Pérez-Marín, D.1    Garrido-Varo, A.2    Guerrero, J.3
  • 16
    • 49949116377 scopus 로고    scopus 로고
    • A monolithic interferometer for FT-IR spectroscopy
    • Bleier Z., Brouillette C., Carangelo R. A monolithic interferometer for FT-IR spectroscopy. Spectroscopy 1999, 14(10):46-49.
    • (1999) Spectroscopy , vol.14 , Issue.10 , pp. 46-49
    • Bleier, Z.1    Brouillette, C.2    Carangelo, R.3
  • 17
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 18
    • 0004128728 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dordrecht Norwell New York London
    • Klement E., Mesiar R., Pap E. Triangular Norms 2000, Kluwer Academic Publishers, Dordrecht Norwell New York London.
    • (2000) Triangular Norms
    • Klement, E.1    Mesiar, R.2    Pap, E.3
  • 20
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models
    • Lughofer E. FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models. IEEE Trans. on Fuzzy Systems 2008, 16(6):1393-1410.
    • (2008) IEEE Trans. on Fuzzy Systems , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 21
    • 13144294059 scopus 로고    scopus 로고
    • Memory retention-the synaptic stability versus plasticity dilemma
    • Abraham W., Robins A. Memory retention-the synaptic stability versus plasticity dilemma. Trends in Neurosciences 2005, 28(2):73-78.
    • (2005) Trends in Neurosciences , vol.28 , Issue.2 , pp. 73-78
    • Abraham, W.1    Robins, A.2
  • 25
    • 80053636500 scopus 로고    scopus 로고
    • Comparing parameter choice methods for regularization of ill-posed problems, Mathematics and Computers in SimulationSubmitted.
    • F. Bauer, M. Lukas, Comparing parameter choice methods for regularization of ill-posed problems, Mathematics and Computers in SimulationSubmitted.
    • Bauer, F.1    Lukas, M.2
  • 26
    • 0023570429 scopus 로고
    • The truncated SVD as a method for regularization
    • Hansen P. The truncated SVD as a method for regularization. BIT 1987, 27(4):534-553.
    • (1987) BIT , vol.27 , Issue.4 , pp. 534-553
    • Hansen, P.1
  • 30
    • 28544443804 scopus 로고    scopus 로고
    • A beginner's guide to partial least squares (PLS) analysis
    • Haenlein M., Kaplan A. A beginner's guide to partial least squares (PLS) analysis. Understanding Statistics 2004, 3(4):283-297.
    • (2004) Understanding Statistics , vol.3 , Issue.4 , pp. 283-297
    • Haenlein, M.1    Kaplan, A.2
  • 31
    • 0032740123 scopus 로고    scopus 로고
    • Use of chemometrics: principal component analysis (PCA) and principal component regression (PCR) for the authentication of orange juice
    • Vaira S., Mantovani V.E., Robles J., Sanchis J.C., Goicoechea H. Use of chemometrics: principal component analysis (PCA) and principal component regression (PCR) for the authentication of orange juice. Analytical Letters 1999, 32(15):3131-3141.
    • (1999) Analytical Letters , vol.32 , Issue.15 , pp. 3131-3141
    • Vaira, S.1    Mantovani, V.E.2    Robles, J.3    Sanchis, J.C.4    Goicoechea, H.5
  • 32
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: support vector machines for large-scale regression problems
    • Collobert R., Bengio S. SVMTorch: support vector machines for large-scale regression problems. Journal of Machine Learning Research 2001, 1:143-160.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 33
    • 67349099632 scopus 로고    scopus 로고
    • Support vector regression for functional data in multivariate calibration problems
    • Hernandez N., Talavera I., Biscay R., Porroa D., Ferreira M. Support vector regression for functional data in multivariate calibration problems. Analytica Chimica Acta 2009, 642(1-2):110-116.
    • (2009) Analytica Chimica Acta , vol.642 , Issue.1-2 , pp. 110-116
    • Hernandez, N.1    Talavera, I.2    Biscay, R.3    Porroa, D.4    Ferreira, M.5
  • 34
    • 80053654465 scopus 로고    scopus 로고
    • A tutorial on support vector regression, Neural and Computational Learning II (030).
    • S.B. SmolaA.J., A tutorial on support vector regression, Neural and Computational Learning II (030).
    • Smola, A.J.1
  • 35
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes V.V.C. Support vector networks. Machine Learning 1995, 20:273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, V.V.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.