메뉴 건너뛰기




Volumn 5, Issue MAY, 2014, Pages

Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator

Author keywords

Biofuel; Cupriavidus necator; Deacetylation; Genomics; Lignin degradation; Polyhydroxylbutyrate (PHB); Pre treatment inhibitor; Saccharified slurry

Indexed keywords

5 HYDROXYMETHYLFURFURAL; ACTIVATED CARBON; AMMONIUM ACETATE; BENZOIC ACID; BIOFUEL; BUTYRIC ACID DERIVATIVE; FURFURAL; LIGNIN; PARA COUMARIC ACID;

EID: 84904906609     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2014.00247     Document Type: Article
Times cited : (42)

References (56)
  • 1
    • 76749140881 scopus 로고    scopus 로고
    • Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
    • doi: 10.1186/1754-6834-3-2
    • Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., et al. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3:2. doi: 10.1186/1754-6834-3-2
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 2
    • Allen, S.A.1    Clark, W.2    McCaffery, J.M.3    Cai, Z.4    Lanctot, A.5    Slininger, P.J.6
  • 2
    • 50649112392 scopus 로고    scopus 로고
    • Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia
    • doi: 10.1101/gr.076448.108
    • Amadou, C., Pascal, G., Mangenot, S., Glew, M., Bontemps, C., Capela, D., et al. (2008). Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18, 1472-1483. doi: 10.1101/gr.076448.108
    • (2008) Genome Res. , vol.18 , pp. 1472-1483
    • Amadou, C.1    Pascal, G.2    Mangenot, S.3    Glew, M.4    Bontemps, C.5    Capela, D.6
  • 3
    • 84873736185 scopus 로고    scopus 로고
    • The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae
    • doi: 10.1186/1754-6834-6-22
    • Ask, M., Bettiga, M., Mapelli, V., and Olsson, L. (2013). The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol. Biofuels 6:22. doi: 10.1186/1754-6834-6-22
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 22
    • Ask, M.1    Bettiga, M.2    Mapelli, V.3    Olsson, L.4
  • 4
    • 84878315786 scopus 로고    scopus 로고
    • Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural
    • doi: 10.1007/s10482-013-9909-1
    • Bajwa, P. K., Ho, C. Y., Chan, C. K., Martin, V. J., Trevors, J. T., and Lee, H. (2013). Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 103, 1281-1295. doi: 10.1007/s10482-013-9909-1
    • (2013) Antonie Van Leeuwenhoek , vol.103 , pp. 1281-1295
    • Bajwa, P.K.1    Ho, C.Y.2    Chan, C.K.3    Martin, V.J.4    Trevors, J.T.5    Lee, H.6
  • 5
    • 0022406621 scopus 로고
    • Bactericidal agents generated by the peroxidase-catalyzed oxidation of para-hydroquinones
    • Beckman, J. S., and Siedow, J. N. (1985). Bactericidal agents generated by the peroxidase-catalyzed oxidation of para-hydroquinones. J. Biol. Chem. 260, 14604-14609.
    • (1985) J. Biol. Chem. , vol.260 , pp. 14604-14609
    • Beckman, J.S.1    Siedow, J.N.2
  • 6
    • 77955566213 scopus 로고    scopus 로고
    • Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification
    • doi: 10.1128/AEM.00542-10
    • Bowman, M. J., Jordan, D. B., Vermillion, K. E., Braker, J. D., Moon, J., and Liu, Z. L. (2010). Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification. Appl. Environ. Microbiol. 76, 4926-4932. doi: 10.1128/AEM.00542-10
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4926-4932
    • Bowman, M.J.1    Jordan, D.B.2    Vermillion, K.E.3    Braker, J.D.4    Moon, J.5    Liu, Z.L.6
  • 7
    • 84868618672 scopus 로고    scopus 로고
    • Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16
    • doi: 10.1128/AEM.01693-12
    • Brigham, C. J., Speth, D. R., Rha, C., and Sinskey, A. J. (2012). Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl. Environ. Microbiol. 78, 8033-8044. doi: 10.1128/AEM.01693-12
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8033-8044
    • Brigham, C.J.1    Speth, D.R.2    Rha, C.3    Sinskey, A.J.4
  • 8
    • 64449088957 scopus 로고    scopus 로고
    • Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol
    • doi: 10.1016/j.procbio.2009.01.008
    • Cavalheiro, J. M. B. T., de Almeida, M. C. M. D., Grandfils, C., and da Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 44, 509-515. doi: 10.1016/j.procbio.2009.01.008
    • (2009) Process Biochem. , vol.44 , pp. 509-515
    • Cavalheiro, J.M.B.T.1    de Almeida, M.C.M.D.2    Grandfils, C.3    da Fonseca, M.M.R.4
  • 9
    • 84857379484 scopus 로고    scopus 로고
    • The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process
    • doi: 10.1186/1754-6834-5-8
    • Chen, X., Shekiro, J., Franden, M. A., Wang, W., Zhang, M., Kuhn, E., et al. (2012). The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol. Biofuels 5:8. doi: 10.1186/1754-6834-5-8
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 8
    • Chen, X.1    Shekiro, J.2    Franden, M.A.3    Wang, W.4    Zhang, M.5    Kuhn, E.6
  • 10
    • 84861216358 scopus 로고    scopus 로고
    • De novo genome project of Cupriavidus basilensis OR16
    • doi: 10.1128/JB.06752-11
    • Cserhati, M., Kriszt, B., Szoboszlay, S., Toth, A., Szabo, I., Táncsics, A., et al. (2012). De novo genome project of Cupriavidus basilensis OR16. J. Bacteriol. 194, 2109-2110. doi: 10.1128/JB.06752-11
    • (2012) J. Bacteriol. , vol.194 , pp. 2109-2110
    • Cserhati, M.1    Kriszt, B.2    Szoboszlay, S.3    Toth, A.4    Szabo, I.5    Táncsics, A.6
  • 11
    • 80053172430 scopus 로고    scopus 로고
    • Engineering microbes for tolerance to next-generation biofuels
    • doi: 10.1186/1754-6834-4-32
    • Dunlop, M. J. (2011). Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4:32. doi: 10.1186/1754-6834-4-32
    • (2011) Biotechnol. Biofuels , vol.4 , pp. 32
    • Dunlop, M.J.1
  • 12
    • 79955806186 scopus 로고    scopus 로고
    • Engineering microbial biofuel tolerance and export using efflux pumps
    • doi: 10.1038/msb.2011.21
    • Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., et al. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7:487. doi: 10.1038/msb.2011.21
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 487
    • Dunlop, M.J.1    Dossani, Z.Y.2    Szmidt, H.L.3    Chu, H.C.4    Lee, T.S.5    Keasling, J.D.6
  • 13
    • 45149104923 scopus 로고    scopus 로고
    • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
    • doi: 10.1186/1754-6834-1-3
    • Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., and Shima, J. (2008). Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1:3. doi: 10.1186/1754-6834-1-3
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 3
    • Endo, A.1    Nakamura, T.2    Ando, A.3    Tokuyasu, K.4    Shima, J.5
  • 14
    • 79954503644 scopus 로고    scopus 로고
    • Production of C(3) hydrocarbons from biomass via hydrothermal carboxylate reforming
    • doi: 10.1021/ie1023386
    • Fischer, C. R., Peterson, A. A., and Tester, J. W. (2011). Production of C(3) hydrocarbons from biomass via hydrothermal carboxylate reforming. Ind. Eng. Chem. Res. 50, 4420-4424. doi: 10.1021/ie1023386
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 4420-4424
    • Fischer, C.R.1    Peterson, A.A.2    Tester, J.W.3
  • 15
    • 70450257650 scopus 로고    scopus 로고
    • Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis
    • doi: 10.1016/j.jbiotec.2009.08.006
    • Franden, M. A., Pienkos, P. T., and Zhang, M. (2009). Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. doi: 10.1016/j.jbiotec.2009.08.006
    • (2009) J. Biotechnol. , vol.144 , pp. 259-267
    • Franden, M.A.1    Pienkos, P.T.2    Zhang, M.3
  • 16
    • 84880029566 scopus 로고    scopus 로고
    • Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
    • doi: 10.1186/1754-6834-6-99
    • Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T., and Zhang, M. (2013). Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels 6:99. doi: 10.1186/1754-6834-6-99
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 99
    • Franden, M.A.1    Pilath, H.M.2    Mohagheghi, A.3    Pienkos, P.T.4    Zhang, M.5
  • 17
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • doi: 10.1007/s00253-005-0142-3
    • Gorsich, S. W., Dien, B. S., Nichols, N. N., Slininger, P. J., Liu, Z. L., and Scory, C. D. (2006). Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71, 339-349. doi: 10.1007/s00253-005-0142-3
    • (2006) Appl. Microbiol. Biotechnol. , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Scory, C.D.6
  • 18
    • 45549089420 scopus 로고    scopus 로고
    • High-throughput functional annotation and data mining with the Blast2GO suite
    • doi: 10.1093/nar/gkn176
    • Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435. doi: 10.1093/nar/gkn176
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3420-3435
    • Gotz, S.1    Garcia-Gomez, J.M.2    Terol, J.3    Williams, T.D.4    Nagaraj, S.H.5    Nueda, M.J.6
  • 19
    • 0029795374 scopus 로고    scopus 로고
    • The ß-ketoadipate pathway and the biology of self-identity
    • doi: 10.1146/annurev.micro.50.1.553
    • Harwood, C. S., and Parales, R. E. (1996). The ß-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553-590. doi: 10.1146/annurev.micro.50.1.553
    • (1996) Annu. Rev. Microbiol. , vol.50 , pp. 553-590
    • Harwood, C.S.1    Parales, R.E.2
  • 20
    • 84861999245 scopus 로고    scopus 로고
    • Transcriptome profiling of Zymomonas mobilis under furfural stress
    • doi: 10.1007/s00253-012-4155-4
    • He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G., Tan, F. R., et al. (2012). Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199. doi: 10.1007/s00253-012-4155-4
    • (2012) Appl. Microbiol. Biotechnol. , vol.95 , pp. 189-199
    • He, M.X.1    Wu, B.2    Shui, Z.X.3    Hu, Q.C.4    Wang, W.G.5    Tan, F.R.6
  • 21
    • 84869144666 scopus 로고    scopus 로고
    • Whole-genome sequence of Cupriavidus sp strain BIS7, a heavy-metal-resistant bacterium
    • doi: 10.1128/JB.01608-12
    • Hong, K. W., Thinagaran, D., Gan, H. M., Yin, W. F., and Chan, K. G. (2012). Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium. J. Bacteriol. 194:6324. doi: 10.1128/JB.01608-12
    • (2012) J. Bacteriol. , vol.194 , pp. 6324
    • Hong, K.W.1    Thinagaran, D.2    Gan, H.M.3    Yin, W.F.4    Chan, K.G.5
  • 22
    • 84865770109 scopus 로고    scopus 로고
    • In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans
    • doi: 10.1007/s10529-012-0948-x
    • Huang, C., Wu, H., Smith, T. J., Liu, Z. J., Lou, W. Y., and Zong, M. H. (2012). In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnol. Lett. 34, 1637-1642. doi: 10.1007/s10529-012-0948-x
    • (2012) Biotechnol. Lett. , vol.34 , pp. 1637-1642
    • Huang, C.1    Wu, H.2    Smith, T.J.3    Liu, Z.J.4    Lou, W.Y.5    Zong, M.H.6
  • 23
    • 84874729026 scopus 로고    scopus 로고
    • Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae
    • doi: 10.1128/AEM.02797-12
    • Iwaki, A., Kawai, T., Yamamoto, Y., and Izawa, S. (2013). Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79, 1661-1667. doi: 10.1128/AEM.02797-12
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 1661-1667
    • Iwaki, A.1    Kawai, T.2    Yamamoto, Y.3    Izawa, S.4
  • 24
    • 77956398098 scopus 로고    scopus 로고
    • The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments
    • doi: 10.1371/journal.pone.0010433
    • Janssen, P. J., Van Houdt, R., Moors, H., Monsieurs, P., Morin, N., Michaux, A., et al. (2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433. doi: 10.1371/journal.pone.0010433
    • (2010) PLoS ONE , vol.5
    • Janssen, P.J.1    Van Houdt, R.2    Moors, H.3    Monsieurs, P.4    Morin, N.5    Michaux, A.6
  • 25
    • 84858016558 scopus 로고    scopus 로고
    • Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane
    • doi: 10.1039/c2mb05441h
    • Kang, A., and Chang, M. W. (2012). Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol. Biosyst. 8, 1350-1358. doi: 10.1039/c2mb05441h
    • (2012) Mol. Biosyst. , vol.8 , pp. 1350-1358
    • Kang, A.1    Chang, M.W.2
  • 26
    • 0021065601 scopus 로고
    • Analysis of poly-ß-Hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection
    • Karr, D. B., Waters, J. K., and Emerich, D. W. (1983). Analysis of poly-ß-Hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl. Environ. Microbiol. 46, 1339-1344.
    • (1983) Appl. Environ. Microbiol. , vol.46 , pp. 1339-1344
    • Karr, D.B.1    Waters, J.K.2    Emerich, D.W.3
  • 27
    • 0033030735 scopus 로고    scopus 로고
    • Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
    • doi: 10.1385/ABAB:77:1-3:91
    • Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77, 91-103. doi: 10.1385/ABAB:77:1-3:91
    • (1999) Appl. Biochem. Biotechnol. , vol.77 , pp. 91-103
    • Larsson, S.1    Reimann, A.2    Nilvebrant, N.O.3    Jonsson, L.J.4
  • 28
    • 84886413377 scopus 로고    scopus 로고
    • Genome of Cupriavidus sp. HMR-1, a heavy metal-resistant bacterium
    • doi: 10.1128/genomeA.00202-12
    • Li L. G., Cai, L., and Zhang, T. (2013). Genome of Cupriavidus sp. HMR-1, a heavy metal-resistant bacterium. Genome Announc. 1:e00202-e00212. doi: 10.1128/genomeA.00202-12
    • (2013) Genome Announc. , vol.1
    • Li, L.G.1    Cai, L.2    Zhang, T.3
  • 29
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • doi: 10.1007/s00253-008-1702-0
    • Liu, Z. L., Moon, J., Andersh, B. J., Slininger, P. J., and Weber, S. (2008). Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81, 743-753. doi: 10.1007/s00253-008-1702-0
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3    Slininger, P.J.4    Weber, S.5
  • 30
    • 4644229547 scopus 로고    scopus 로고
    • Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
    • doi: 10.1007/s10295-004-0148-3
    • Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A., Kurtzman, C. P., and Gorsich, S. W. (2004). Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31, 345-352. doi: 10.1007/s10295-004-0148-3
    • (2004) J. Ind. Microbiol. Biotechnol. , vol.31 , pp. 345-352
    • Liu, Z.L.1    Slininger, P.J.2    Dien, B.S.3    Berhow, M.A.4    Kurtzman, C.P.5    Gorsich, S.W.6
  • 31
    • 18844392283 scopus 로고    scopus 로고
    • Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains
    • doi: 10.1385/ABAB:121:1-3:0451
    • Liu, Z. L., Slininger, P. J., and Gorsich, S. W. (2005). Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotechnol. 121-124, 451-460. doi: 10.1385/ABAB:121:1-3:0451
    • (2005) Appl. Biochem. Biotechnol , vol.121-124 , pp. 451-460
    • Liu, Z.L.1    Slininger, P.J.2    Gorsich, S.W.3
  • 32
    • 77957826921 scopus 로고    scopus 로고
    • The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader
    • doi: 10.1371/journal.pone.0009729
    • Lykidis, A., Perez-Pantoja, D., Ledger, T., Mavromatis, K., Anderson, I. J., Ivanova, N. N., et al. (2010). The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS ONE 5:e9729. doi: 10.1371/journal.pone.0009729
    • (2010) PLoS ONE , vol.5
    • Lykidis, A.1    Perez-Pantoja, D.2    Ledger, T.3    Mavromatis, K.4    Anderson, I.J.5    Ivanova, N.N.6
  • 33
    • 70449413186 scopus 로고    scopus 로고
    • Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli
    • doi: 10.1186/1754-6834-2-26
    • Mills, T. Y., Sandoval, N. R., and Gill, R. T. (2009). Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2:26. doi: 10.1186/1754-6834-2-26
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 26
    • Mills, T.Y.1    Sandoval, N.R.2    Gill, R.T.3
  • 34
    • 17044443785 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates for ethanol production
    • doi: 10.1016/0141-0229(95)00157-3
    • Olsson, L., and HahnHagerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312-331. doi: 10.1016/0141-0229(95)00157-3
    • (1996) Enzyme Microb. Technol. , vol.18 , pp. 312-331
    • Olsson, L.1    HahnHagerdal, B.2
  • 35
    • 84855340725 scopus 로고    scopus 로고
    • Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production
    • doi: 10.1016/j.jbiosc.2011.09.014
    • Orita, I., Iwazawa, R., Nakamura, S., and Fukui, T. (2012). Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. J. Biosci. Bioeng. 113, 63-69. doi: 10.1016/j.jbiosc.2011.09.014
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 63-69
    • Orita, I.1    Iwazawa, R.2    Nakamura, S.3    Fukui, T.4
  • 36
    • 79959610473 scopus 로고    scopus 로고
    • Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production
    • doi: 10.1186/1752-0509-5-101
    • Park, J. M., Kim, T. Y., and Lee, S. Y. (2011). Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst. Biol. 5:101. doi: 10.1186/1752-0509-5-101
    • (2011) BMC Syst. Biol. , vol.5 , pp. 101
    • Park, J.M.1    Kim, T.Y.2    Lee, S.Y.3
  • 37
    • 32344450763 scopus 로고    scopus 로고
    • Formation of ortho-benzoquinone from sodium benzoate by Pseudomonas mendocina P2d
    • Parulekar, C., and Mavinkurve, S. (2006). Formation of ortho-benzoquinone from sodium benzoate by Pseudomonas mendocina P2d. Indian J. Exp. Biol. 44, 157-162.
    • (2006) Indian J. Exp. Biol. , vol.44 , pp. 157-162
    • Parulekar, C.1    Mavinkurve, S.2
  • 38
    • 77954616682 scopus 로고    scopus 로고
    • Genome-wide transcriptome analyses of the "Knallgas" bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism
    • doi: 10.1099/mic.0.038380-0
    • Peplinski, K., Ehrenreich, A., Doring, C., Bomeke, M., Reinecke, F., Hutmacher, C., et al. (2010). Genome-wide transcriptome analyses of the "Knallgas" bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156, 2136-2152. doi: 10.1099/mic.0.038380-0
    • (2010) Microbiology , vol.156 , pp. 2136-2152
    • Peplinski, K.1    Ehrenreich, A.2    Doring, C.3    Bomeke, M.4    Reinecke, F.5    Hutmacher, C.6
  • 39
    • 49649090880 scopus 로고    scopus 로고
    • Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134
    • doi: 10.1111/j.1574-6976.2008.00122.x
    • Pérez-Pantoja, D., De la Iglesia, R., Pieper, D. H., and Gonzalez, B. (2008). Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32, 736-794. doi: 10.1111/j.1574-6976.2008.00122.x
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 736-794
    • Pérez-Pantoja, D.1    De la Iglesia, R.2    Pieper, D.H.3    Gonzalez, B.4
  • 40
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • doi: 10.1002/yea.1370
    • Petersson, A., Almeida, J. R., Modig, T., Karhumaa, K., Hahn-Hagerdal, B., Gorwa-Grauslund, M. F., et al. (2006). A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23, 455-464. doi: 10.1002/yea.1370
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.2    Modig, T.3    Karhumaa, K.4    Hahn-Hagerdal, B.5    Gorwa-Grauslund, M.F.6
  • 41
    • 84904912479 scopus 로고    scopus 로고
    • A route from biomass to hydrocarbons via depolymerization and decarboxylation of microbially produced polyhydroxybutyrate
    • ed H. E. Himmel (Waltham, MA: Elsevier-Science and Technology Books).
    • Pilath, H., Mittal, A., Moens, L., Vinzant, T., Wang, W., and Johnson, D. (2013). "A route from biomass to hydrocarbons via depolymerization and decarboxylation of microbially produced polyhydroxybutyrate," in Direct Microbial Conversion of Biomass to Advanced Biofuels, ed H. E. Himmel (Waltham, MA: Elsevier-Science and Technology Books).
    • (2013) Direct Microbial Conversion of Biomass to Advanced Biofuels
    • Pilath, H.1    Mittal, A.2    Moens, L.3    Vinzant, T.4    Wang, W.5    Johnson, D.6
  • 42
    • 80052550319 scopus 로고    scopus 로고
    • Complete genome sequence of the type strain Cupriavidus necator N-1
    • doi: 10.1128/JB.05660-11
    • Oehlein, A., Kusian, B., Friedrich, B., Daniel, R., and Bowien, B. (2011). Complete genome sequence of the type strain Cupriavidus necator N-1. J. Bacteriol. 193:5017. doi: 10.1128/JB.05660-11
    • (2011) J. Bacteriol. , vol.193 , pp. 5017
    • Oehlein, A.1    Kusian, B.2    Friedrich, B.3    Daniel, R.4    Bowien, B.5
  • 43
    • 33749863920 scopus 로고    scopus 로고
    • Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16
    • doi: 10.1038/nbt1244
    • Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., et al. (2006). Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257-1262. doi: 10.1038/nbt1244
    • (2006) Nat. Biotechnol. , vol.24 , pp. 1257-1262
    • Pohlmann, A.1    Fricke, W.F.2    Reinecke, F.3    Kusian, B.4    Liesegang, H.5    Cramm, R.6
  • 44
    • 78650825433 scopus 로고    scopus 로고
    • Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels
    • doi: 10.1039/c0ee00436g
    • Serrano-Ruiz, J. C., and Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci. 4, 83-99. doi: 10.1039/c0ee00436g
    • (2011) Energy Environ. Sci. , vol.4 , pp. 83-99
    • Serrano-Ruiz, J.C.1    Dumesic, J.A.2
  • 45
    • 77958144428 scopus 로고    scopus 로고
    • Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources
    • Sharifzadeh Baei, M., Najafpour, G. D., Younesi, H., Tabandeh, F., and Eisazadeh, H. (2009). Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World Appl. Sci. J. 7, 157-161.
    • (2009) World Appl. Sci. J. , vol.7 , pp. 157-161
    • Sharifzadeh Baei, M.1    Najafpour, G.D.2    Younesi, H.3    Tabandeh, F.4    Eisazadeh, H.5
  • 46
    • 85044303384 scopus 로고    scopus 로고
    • Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8
    • doi: 10.1186/1754-6834-6-1
    • Hi, Y., Chai, L., Tang, C., Yang, Z., Zhang, H., Chen, R. H., et al. (2013). Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6:1. doi: 10.1186/1754-6834-6-1
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 1
    • Hi, Y.1    Chai, L.2    Tang, C.3    Yang, Z.4    Zhang, H.5    Chen, R.H.6
  • 47
    • 84858711633 scopus 로고    scopus 로고
    • Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans
    • doi: 10.1186/1471-2164-13-111
    • Van Houdt, R., Monsieurs, P., Mijnendonckx, K., Provoost, A., Janssen, A., Megeay, M., et al. (2012). Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 13:111. doi: 10.1186/1471-2164-13-111
    • (2012) BMC Genomics , vol.13 , pp. 111
    • Van Houdt, R.1    Monsieurs, P.2    Mijnendonckx, K.3    Provoost, A.4    Janssen, A.5    Megeay, M.6
  • 48
    • 84883709020 scopus 로고    scopus 로고
    • Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
    • doi: 10.1186/1754-6834-6-131
    • Wilson, C. M., Yang, S., Rodriguez, M. Jr., Ma, Q., Johnson, C. M., Dice, L., et al. (2013). Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol. Biofuels 6:131. doi: 10.1186/1754-6834-6-131
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 131
    • Wilson, C.M.1    Yang, S.2    Rodriguez Jr, M.3    Ma, Q.4    Johnson, C.M.5    Dice, L.6
  • 49
    • 84863930599 scopus 로고    scopus 로고
    • Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol
    • doi: 10.1089/omi.2011.0127
    • Yang, J., Ding, M. Z., Li, B. Z., Liu, Z. L., Wang, X., and Yuan, Y. J. (2012a). Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16, 374-386. doi: 10.1089/omi.2011.0127
    • (2012) OMICS , vol.16 , pp. 374-386
    • Yang, J.1    Ding, M.Z.2    Li, B.Z.3    Liu, Z.L.4    Wang, X.5    Yuan, Y.J.6
  • 50
    • 84886297077 scopus 로고    scopus 로고
    • Genomics on pretreatment inhibitor tolerance of Zymomonas mobilis
    • ed Z. L. Liu (Berlin Heidelberg: Springer). doi: 10.1007/978-3-642-21467-7_7
    • Yang, S., Keller, M., and Brown, S. (2012b). "Genomics on pretreatment inhibitor tolerance of Zymomonas mobilis," in Microbial Stress Tolerance for Biofuels, ed Z. L. Liu (Berlin Heidelberg: Springer), 161-175. doi: 10.1007/978-3-642-21467-7_7
    • (2012) Microbial Stress Tolerance for Biofuels , pp. 161-175
    • Yang, S.1    Keller, M.2    Brown, S.3
  • 51
    • 77953738245 scopus 로고    scopus 로고
    • Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
    • doi: 10.1073/pnas.0914506107
    • Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A., Lu, T. Y., Martin, S. L., et al. (2010a). Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 107, 10395-10400. doi: 10.1073/pnas.0914506107
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 10395-10400
    • Yang, S.1    Land, M.L.2    Klingeman, D.M.3    Pelletier, D.A.4    Lu, T.Y.5    Martin, S.L.6
  • 52
    • 85028122323 scopus 로고    scopus 로고
    • The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
    • doi: 10.1186/1471-2180-10-135
    • Yang, S., Pelletier, D. A., Lu, T. Y., and Brown, S. D. (2010b). The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10:135. doi: 10.1186/1471-2180-10-135
    • (2010) BMC Microbiol , vol.10 , pp. 135
    • Yang, S.1    Pelletier, D.A.2    Lu, T.Y.3    Brown, S.D.4
  • 53
    • 0033395572 scopus 로고    scopus 로고
    • Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01
    • doi: 10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
    • Zaldivar, J., and Ingram, L. O. (1999). Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66, 203-210. doi: 10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
    • (1999) Biotechnol. Bioeng. , vol.66 , pp. 203-210
    • Zaldivar, J.1    Ingram, L.O.2
  • 54
    • 0033527357 scopus 로고    scopus 로고
    • Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli
    • doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
    • Zaldivar, J., Martinez, A., and Ingram, L. O. (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33. doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
    • (1999) Biotechnol. Bioeng. , vol.65 , pp. 24-33
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 55
    • 84886302670 scopus 로고    scopus 로고
    • Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels
    • doi: 10.1016/j.copbio.2013.09.008
    • Zeng, Y., Zhao, S., Yang, S., and Ding, S.-Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol. 27:8. doi: 10.1016/j.copbio.2013.09.008
    • (2014) Curr. Opin. Biotechnol. , vol.27 , pp. 8
    • Zeng, Y.1    Zhao, S.2    Yang, S.3    Ding, S.-Y.4
  • 56
    • 80052647009 scopus 로고    scopus 로고
    • Metabolic engineering of microbial pathways for advanced biofuels production
    • doi: 10.1016/j.copbio.2011.04.024
    • Zhang, F., Rodriguez, S., and Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Curr. Opin. Biotechnol. 22, 775-783. doi: 10.1016/j.copbio.2011.04.024
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 775-783
    • Zhang, F.1    Rodriguez, S.2    Keasling, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.