-
1
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
doi: 10.1186/1754-6834-3-2
-
Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., et al. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3:2. doi: 10.1186/1754-6834-3-2
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
McCaffery, J.M.3
Cai, Z.4
Lanctot, A.5
Slininger, P.J.6
-
2
-
-
50649112392
-
Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia
-
doi: 10.1101/gr.076448.108
-
Amadou, C., Pascal, G., Mangenot, S., Glew, M., Bontemps, C., Capela, D., et al. (2008). Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18, 1472-1483. doi: 10.1101/gr.076448.108
-
(2008)
Genome Res.
, vol.18
, pp. 1472-1483
-
-
Amadou, C.1
Pascal, G.2
Mangenot, S.3
Glew, M.4
Bontemps, C.5
Capela, D.6
-
3
-
-
84873736185
-
The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae
-
doi: 10.1186/1754-6834-6-22
-
Ask, M., Bettiga, M., Mapelli, V., and Olsson, L. (2013). The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol. Biofuels 6:22. doi: 10.1186/1754-6834-6-22
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 22
-
-
Ask, M.1
Bettiga, M.2
Mapelli, V.3
Olsson, L.4
-
4
-
-
84878315786
-
Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural
-
doi: 10.1007/s10482-013-9909-1
-
Bajwa, P. K., Ho, C. Y., Chan, C. K., Martin, V. J., Trevors, J. T., and Lee, H. (2013). Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 103, 1281-1295. doi: 10.1007/s10482-013-9909-1
-
(2013)
Antonie Van Leeuwenhoek
, vol.103
, pp. 1281-1295
-
-
Bajwa, P.K.1
Ho, C.Y.2
Chan, C.K.3
Martin, V.J.4
Trevors, J.T.5
Lee, H.6
-
5
-
-
0022406621
-
Bactericidal agents generated by the peroxidase-catalyzed oxidation of para-hydroquinones
-
Beckman, J. S., and Siedow, J. N. (1985). Bactericidal agents generated by the peroxidase-catalyzed oxidation of para-hydroquinones. J. Biol. Chem. 260, 14604-14609.
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 14604-14609
-
-
Beckman, J.S.1
Siedow, J.N.2
-
6
-
-
77955566213
-
Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification
-
doi: 10.1128/AEM.00542-10
-
Bowman, M. J., Jordan, D. B., Vermillion, K. E., Braker, J. D., Moon, J., and Liu, Z. L. (2010). Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification. Appl. Environ. Microbiol. 76, 4926-4932. doi: 10.1128/AEM.00542-10
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 4926-4932
-
-
Bowman, M.J.1
Jordan, D.B.2
Vermillion, K.E.3
Braker, J.D.4
Moon, J.5
Liu, Z.L.6
-
7
-
-
84868618672
-
Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16
-
doi: 10.1128/AEM.01693-12
-
Brigham, C. J., Speth, D. R., Rha, C., and Sinskey, A. J. (2012). Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl. Environ. Microbiol. 78, 8033-8044. doi: 10.1128/AEM.01693-12
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 8033-8044
-
-
Brigham, C.J.1
Speth, D.R.2
Rha, C.3
Sinskey, A.J.4
-
8
-
-
64449088957
-
Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol
-
doi: 10.1016/j.procbio.2009.01.008
-
Cavalheiro, J. M. B. T., de Almeida, M. C. M. D., Grandfils, C., and da Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 44, 509-515. doi: 10.1016/j.procbio.2009.01.008
-
(2009)
Process Biochem.
, vol.44
, pp. 509-515
-
-
Cavalheiro, J.M.B.T.1
de Almeida, M.C.M.D.2
Grandfils, C.3
da Fonseca, M.M.R.4
-
9
-
-
84857379484
-
The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process
-
doi: 10.1186/1754-6834-5-8
-
Chen, X., Shekiro, J., Franden, M. A., Wang, W., Zhang, M., Kuhn, E., et al. (2012). The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol. Biofuels 5:8. doi: 10.1186/1754-6834-5-8
-
(2012)
Biotechnol. Biofuels
, vol.5
, pp. 8
-
-
Chen, X.1
Shekiro, J.2
Franden, M.A.3
Wang, W.4
Zhang, M.5
Kuhn, E.6
-
10
-
-
84861216358
-
De novo genome project of Cupriavidus basilensis OR16
-
doi: 10.1128/JB.06752-11
-
Cserhati, M., Kriszt, B., Szoboszlay, S., Toth, A., Szabo, I., Táncsics, A., et al. (2012). De novo genome project of Cupriavidus basilensis OR16. J. Bacteriol. 194, 2109-2110. doi: 10.1128/JB.06752-11
-
(2012)
J. Bacteriol.
, vol.194
, pp. 2109-2110
-
-
Cserhati, M.1
Kriszt, B.2
Szoboszlay, S.3
Toth, A.4
Szabo, I.5
Táncsics, A.6
-
11
-
-
80053172430
-
Engineering microbes for tolerance to next-generation biofuels
-
doi: 10.1186/1754-6834-4-32
-
Dunlop, M. J. (2011). Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4:32. doi: 10.1186/1754-6834-4-32
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 32
-
-
Dunlop, M.J.1
-
12
-
-
79955806186
-
Engineering microbial biofuel tolerance and export using efflux pumps
-
doi: 10.1038/msb.2011.21
-
Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., et al. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7:487. doi: 10.1038/msb.2011.21
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 487
-
-
Dunlop, M.J.1
Dossani, Z.Y.2
Szmidt, H.L.3
Chu, H.C.4
Lee, T.S.5
Keasling, J.D.6
-
13
-
-
45149104923
-
Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
doi: 10.1186/1754-6834-1-3
-
Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., and Shima, J. (2008). Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1:3. doi: 10.1186/1754-6834-1-3
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 3
-
-
Endo, A.1
Nakamura, T.2
Ando, A.3
Tokuyasu, K.4
Shima, J.5
-
14
-
-
79954503644
-
Production of C(3) hydrocarbons from biomass via hydrothermal carboxylate reforming
-
doi: 10.1021/ie1023386
-
Fischer, C. R., Peterson, A. A., and Tester, J. W. (2011). Production of C(3) hydrocarbons from biomass via hydrothermal carboxylate reforming. Ind. Eng. Chem. Res. 50, 4420-4424. doi: 10.1021/ie1023386
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 4420-4424
-
-
Fischer, C.R.1
Peterson, A.A.2
Tester, J.W.3
-
15
-
-
70450257650
-
Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis
-
doi: 10.1016/j.jbiotec.2009.08.006
-
Franden, M. A., Pienkos, P. T., and Zhang, M. (2009). Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. doi: 10.1016/j.jbiotec.2009.08.006
-
(2009)
J. Biotechnol.
, vol.144
, pp. 259-267
-
-
Franden, M.A.1
Pienkos, P.T.2
Zhang, M.3
-
16
-
-
84880029566
-
Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
-
doi: 10.1186/1754-6834-6-99
-
Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T., and Zhang, M. (2013). Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels 6:99. doi: 10.1186/1754-6834-6-99
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 99
-
-
Franden, M.A.1
Pilath, H.M.2
Mohagheghi, A.3
Pienkos, P.T.4
Zhang, M.5
-
17
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
doi: 10.1007/s00253-005-0142-3
-
Gorsich, S. W., Dien, B. S., Nichols, N. N., Slininger, P. J., Liu, Z. L., and Scory, C. D. (2006). Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71, 339-349. doi: 10.1007/s00253-005-0142-3
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Scory, C.D.6
-
18
-
-
45549089420
-
High-throughput functional annotation and data mining with the Blast2GO suite
-
doi: 10.1093/nar/gkn176
-
Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435. doi: 10.1093/nar/gkn176
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 3420-3435
-
-
Gotz, S.1
Garcia-Gomez, J.M.2
Terol, J.3
Williams, T.D.4
Nagaraj, S.H.5
Nueda, M.J.6
-
19
-
-
0029795374
-
The ß-ketoadipate pathway and the biology of self-identity
-
doi: 10.1146/annurev.micro.50.1.553
-
Harwood, C. S., and Parales, R. E. (1996). The ß-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553-590. doi: 10.1146/annurev.micro.50.1.553
-
(1996)
Annu. Rev. Microbiol.
, vol.50
, pp. 553-590
-
-
Harwood, C.S.1
Parales, R.E.2
-
20
-
-
84861999245
-
Transcriptome profiling of Zymomonas mobilis under furfural stress
-
doi: 10.1007/s00253-012-4155-4
-
He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G., Tan, F. R., et al. (2012). Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199. doi: 10.1007/s00253-012-4155-4
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.95
, pp. 189-199
-
-
He, M.X.1
Wu, B.2
Shui, Z.X.3
Hu, Q.C.4
Wang, W.G.5
Tan, F.R.6
-
21
-
-
84869144666
-
Whole-genome sequence of Cupriavidus sp strain BIS7, a heavy-metal-resistant bacterium
-
doi: 10.1128/JB.01608-12
-
Hong, K. W., Thinagaran, D., Gan, H. M., Yin, W. F., and Chan, K. G. (2012). Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium. J. Bacteriol. 194:6324. doi: 10.1128/JB.01608-12
-
(2012)
J. Bacteriol.
, vol.194
, pp. 6324
-
-
Hong, K.W.1
Thinagaran, D.2
Gan, H.M.3
Yin, W.F.4
Chan, K.G.5
-
22
-
-
84865770109
-
In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans
-
doi: 10.1007/s10529-012-0948-x
-
Huang, C., Wu, H., Smith, T. J., Liu, Z. J., Lou, W. Y., and Zong, M. H. (2012). In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnol. Lett. 34, 1637-1642. doi: 10.1007/s10529-012-0948-x
-
(2012)
Biotechnol. Lett.
, vol.34
, pp. 1637-1642
-
-
Huang, C.1
Wu, H.2
Smith, T.J.3
Liu, Z.J.4
Lou, W.Y.5
Zong, M.H.6
-
23
-
-
84874729026
-
Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae
-
doi: 10.1128/AEM.02797-12
-
Iwaki, A., Kawai, T., Yamamoto, Y., and Izawa, S. (2013). Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79, 1661-1667. doi: 10.1128/AEM.02797-12
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 1661-1667
-
-
Iwaki, A.1
Kawai, T.2
Yamamoto, Y.3
Izawa, S.4
-
24
-
-
77956398098
-
The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments
-
doi: 10.1371/journal.pone.0010433
-
Janssen, P. J., Van Houdt, R., Moors, H., Monsieurs, P., Morin, N., Michaux, A., et al. (2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433. doi: 10.1371/journal.pone.0010433
-
(2010)
PLoS ONE
, vol.5
-
-
Janssen, P.J.1
Van Houdt, R.2
Moors, H.3
Monsieurs, P.4
Morin, N.5
Michaux, A.6
-
25
-
-
84858016558
-
Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane
-
doi: 10.1039/c2mb05441h
-
Kang, A., and Chang, M. W. (2012). Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol. Biosyst. 8, 1350-1358. doi: 10.1039/c2mb05441h
-
(2012)
Mol. Biosyst.
, vol.8
, pp. 1350-1358
-
-
Kang, A.1
Chang, M.W.2
-
26
-
-
0021065601
-
Analysis of poly-ß-Hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection
-
Karr, D. B., Waters, J. K., and Emerich, D. W. (1983). Analysis of poly-ß-Hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl. Environ. Microbiol. 46, 1339-1344.
-
(1983)
Appl. Environ. Microbiol.
, vol.46
, pp. 1339-1344
-
-
Karr, D.B.1
Waters, J.K.2
Emerich, D.W.3
-
27
-
-
0033030735
-
Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
-
doi: 10.1385/ABAB:77:1-3:91
-
Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77, 91-103. doi: 10.1385/ABAB:77:1-3:91
-
(1999)
Appl. Biochem. Biotechnol.
, vol.77
, pp. 91-103
-
-
Larsson, S.1
Reimann, A.2
Nilvebrant, N.O.3
Jonsson, L.J.4
-
28
-
-
84886413377
-
Genome of Cupriavidus sp. HMR-1, a heavy metal-resistant bacterium
-
doi: 10.1128/genomeA.00202-12
-
Li L. G., Cai, L., and Zhang, T. (2013). Genome of Cupriavidus sp. HMR-1, a heavy metal-resistant bacterium. Genome Announc. 1:e00202-e00212. doi: 10.1128/genomeA.00202-12
-
(2013)
Genome Announc.
, vol.1
-
-
Li, L.G.1
Cai, L.2
Zhang, T.3
-
29
-
-
57249097175
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
-
doi: 10.1007/s00253-008-1702-0
-
Liu, Z. L., Moon, J., Andersh, B. J., Slininger, P. J., and Weber, S. (2008). Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81, 743-753. doi: 10.1007/s00253-008-1702-0
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 743-753
-
-
Liu, Z.L.1
Moon, J.2
Andersh, B.J.3
Slininger, P.J.4
Weber, S.5
-
30
-
-
4644229547
-
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
-
doi: 10.1007/s10295-004-0148-3
-
Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A., Kurtzman, C. P., and Gorsich, S. W. (2004). Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31, 345-352. doi: 10.1007/s10295-004-0148-3
-
(2004)
J. Ind. Microbiol. Biotechnol.
, vol.31
, pp. 345-352
-
-
Liu, Z.L.1
Slininger, P.J.2
Dien, B.S.3
Berhow, M.A.4
Kurtzman, C.P.5
Gorsich, S.W.6
-
31
-
-
18844392283
-
Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains
-
doi: 10.1385/ABAB:121:1-3:0451
-
Liu, Z. L., Slininger, P. J., and Gorsich, S. W. (2005). Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotechnol. 121-124, 451-460. doi: 10.1385/ABAB:121:1-3:0451
-
(2005)
Appl. Biochem. Biotechnol
, vol.121-124
, pp. 451-460
-
-
Liu, Z.L.1
Slininger, P.J.2
Gorsich, S.W.3
-
32
-
-
77957826921
-
The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader
-
doi: 10.1371/journal.pone.0009729
-
Lykidis, A., Perez-Pantoja, D., Ledger, T., Mavromatis, K., Anderson, I. J., Ivanova, N. N., et al. (2010). The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS ONE 5:e9729. doi: 10.1371/journal.pone.0009729
-
(2010)
PLoS ONE
, vol.5
-
-
Lykidis, A.1
Perez-Pantoja, D.2
Ledger, T.3
Mavromatis, K.4
Anderson, I.J.5
Ivanova, N.N.6
-
33
-
-
70449413186
-
Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli
-
doi: 10.1186/1754-6834-2-26
-
Mills, T. Y., Sandoval, N. R., and Gill, R. T. (2009). Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2:26. doi: 10.1186/1754-6834-2-26
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 26
-
-
Mills, T.Y.1
Sandoval, N.R.2
Gill, R.T.3
-
34
-
-
17044443785
-
Fermentation of lignocellulosic hydrolysates for ethanol production
-
doi: 10.1016/0141-0229(95)00157-3
-
Olsson, L., and HahnHagerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312-331. doi: 10.1016/0141-0229(95)00157-3
-
(1996)
Enzyme Microb. Technol.
, vol.18
, pp. 312-331
-
-
Olsson, L.1
HahnHagerdal, B.2
-
35
-
-
84855340725
-
Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production
-
doi: 10.1016/j.jbiosc.2011.09.014
-
Orita, I., Iwazawa, R., Nakamura, S., and Fukui, T. (2012). Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. J. Biosci. Bioeng. 113, 63-69. doi: 10.1016/j.jbiosc.2011.09.014
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 63-69
-
-
Orita, I.1
Iwazawa, R.2
Nakamura, S.3
Fukui, T.4
-
36
-
-
79959610473
-
Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production
-
doi: 10.1186/1752-0509-5-101
-
Park, J. M., Kim, T. Y., and Lee, S. Y. (2011). Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst. Biol. 5:101. doi: 10.1186/1752-0509-5-101
-
(2011)
BMC Syst. Biol.
, vol.5
, pp. 101
-
-
Park, J.M.1
Kim, T.Y.2
Lee, S.Y.3
-
37
-
-
32344450763
-
Formation of ortho-benzoquinone from sodium benzoate by Pseudomonas mendocina P2d
-
Parulekar, C., and Mavinkurve, S. (2006). Formation of ortho-benzoquinone from sodium benzoate by Pseudomonas mendocina P2d. Indian J. Exp. Biol. 44, 157-162.
-
(2006)
Indian J. Exp. Biol.
, vol.44
, pp. 157-162
-
-
Parulekar, C.1
Mavinkurve, S.2
-
38
-
-
77954616682
-
Genome-wide transcriptome analyses of the "Knallgas" bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism
-
doi: 10.1099/mic.0.038380-0
-
Peplinski, K., Ehrenreich, A., Doring, C., Bomeke, M., Reinecke, F., Hutmacher, C., et al. (2010). Genome-wide transcriptome analyses of the "Knallgas" bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156, 2136-2152. doi: 10.1099/mic.0.038380-0
-
(2010)
Microbiology
, vol.156
, pp. 2136-2152
-
-
Peplinski, K.1
Ehrenreich, A.2
Doring, C.3
Bomeke, M.4
Reinecke, F.5
Hutmacher, C.6
-
39
-
-
49649090880
-
Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134
-
doi: 10.1111/j.1574-6976.2008.00122.x
-
Pérez-Pantoja, D., De la Iglesia, R., Pieper, D. H., and Gonzalez, B. (2008). Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32, 736-794. doi: 10.1111/j.1574-6976.2008.00122.x
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 736-794
-
-
Pérez-Pantoja, D.1
De la Iglesia, R.2
Pieper, D.H.3
Gonzalez, B.4
-
40
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
doi: 10.1002/yea.1370
-
Petersson, A., Almeida, J. R., Modig, T., Karhumaa, K., Hahn-Hagerdal, B., Gorwa-Grauslund, M. F., et al. (2006). A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23, 455-464. doi: 10.1002/yea.1370
-
(2006)
Yeast
, vol.23
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.2
Modig, T.3
Karhumaa, K.4
Hahn-Hagerdal, B.5
Gorwa-Grauslund, M.F.6
-
41
-
-
84904912479
-
A route from biomass to hydrocarbons via depolymerization and decarboxylation of microbially produced polyhydroxybutyrate
-
ed H. E. Himmel (Waltham, MA: Elsevier-Science and Technology Books).
-
Pilath, H., Mittal, A., Moens, L., Vinzant, T., Wang, W., and Johnson, D. (2013). "A route from biomass to hydrocarbons via depolymerization and decarboxylation of microbially produced polyhydroxybutyrate," in Direct Microbial Conversion of Biomass to Advanced Biofuels, ed H. E. Himmel (Waltham, MA: Elsevier-Science and Technology Books).
-
(2013)
Direct Microbial Conversion of Biomass to Advanced Biofuels
-
-
Pilath, H.1
Mittal, A.2
Moens, L.3
Vinzant, T.4
Wang, W.5
Johnson, D.6
-
42
-
-
80052550319
-
Complete genome sequence of the type strain Cupriavidus necator N-1
-
doi: 10.1128/JB.05660-11
-
Oehlein, A., Kusian, B., Friedrich, B., Daniel, R., and Bowien, B. (2011). Complete genome sequence of the type strain Cupriavidus necator N-1. J. Bacteriol. 193:5017. doi: 10.1128/JB.05660-11
-
(2011)
J. Bacteriol.
, vol.193
, pp. 5017
-
-
Oehlein, A.1
Kusian, B.2
Friedrich, B.3
Daniel, R.4
Bowien, B.5
-
43
-
-
33749863920
-
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16
-
doi: 10.1038/nbt1244
-
Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., et al. (2006). Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257-1262. doi: 10.1038/nbt1244
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 1257-1262
-
-
Pohlmann, A.1
Fricke, W.F.2
Reinecke, F.3
Kusian, B.4
Liesegang, H.5
Cramm, R.6
-
44
-
-
78650825433
-
Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels
-
doi: 10.1039/c0ee00436g
-
Serrano-Ruiz, J. C., and Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci. 4, 83-99. doi: 10.1039/c0ee00436g
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 83-99
-
-
Serrano-Ruiz, J.C.1
Dumesic, J.A.2
-
45
-
-
77958144428
-
Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources
-
Sharifzadeh Baei, M., Najafpour, G. D., Younesi, H., Tabandeh, F., and Eisazadeh, H. (2009). Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World Appl. Sci. J. 7, 157-161.
-
(2009)
World Appl. Sci. J.
, vol.7
, pp. 157-161
-
-
Sharifzadeh Baei, M.1
Najafpour, G.D.2
Younesi, H.3
Tabandeh, F.4
Eisazadeh, H.5
-
46
-
-
85044303384
-
Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8
-
doi: 10.1186/1754-6834-6-1
-
Hi, Y., Chai, L., Tang, C., Yang, Z., Zhang, H., Chen, R. H., et al. (2013). Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6:1. doi: 10.1186/1754-6834-6-1
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 1
-
-
Hi, Y.1
Chai, L.2
Tang, C.3
Yang, Z.4
Zhang, H.5
Chen, R.H.6
-
47
-
-
84858711633
-
Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans
-
doi: 10.1186/1471-2164-13-111
-
Van Houdt, R., Monsieurs, P., Mijnendonckx, K., Provoost, A., Janssen, A., Megeay, M., et al. (2012). Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 13:111. doi: 10.1186/1471-2164-13-111
-
(2012)
BMC Genomics
, vol.13
, pp. 111
-
-
Van Houdt, R.1
Monsieurs, P.2
Mijnendonckx, K.3
Provoost, A.4
Janssen, A.5
Megeay, M.6
-
48
-
-
84883709020
-
Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
-
doi: 10.1186/1754-6834-6-131
-
Wilson, C. M., Yang, S., Rodriguez, M. Jr., Ma, Q., Johnson, C. M., Dice, L., et al. (2013). Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol. Biofuels 6:131. doi: 10.1186/1754-6834-6-131
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 131
-
-
Wilson, C.M.1
Yang, S.2
Rodriguez Jr, M.3
Ma, Q.4
Johnson, C.M.5
Dice, L.6
-
49
-
-
84863930599
-
Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol
-
doi: 10.1089/omi.2011.0127
-
Yang, J., Ding, M. Z., Li, B. Z., Liu, Z. L., Wang, X., and Yuan, Y. J. (2012a). Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16, 374-386. doi: 10.1089/omi.2011.0127
-
(2012)
OMICS
, vol.16
, pp. 374-386
-
-
Yang, J.1
Ding, M.Z.2
Li, B.Z.3
Liu, Z.L.4
Wang, X.5
Yuan, Y.J.6
-
50
-
-
84886297077
-
Genomics on pretreatment inhibitor tolerance of Zymomonas mobilis
-
ed Z. L. Liu (Berlin Heidelberg: Springer). doi: 10.1007/978-3-642-21467-7_7
-
Yang, S., Keller, M., and Brown, S. (2012b). "Genomics on pretreatment inhibitor tolerance of Zymomonas mobilis," in Microbial Stress Tolerance for Biofuels, ed Z. L. Liu (Berlin Heidelberg: Springer), 161-175. doi: 10.1007/978-3-642-21467-7_7
-
(2012)
Microbial Stress Tolerance for Biofuels
, pp. 161-175
-
-
Yang, S.1
Keller, M.2
Brown, S.3
-
51
-
-
77953738245
-
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
-
doi: 10.1073/pnas.0914506107
-
Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A., Lu, T. Y., Martin, S. L., et al. (2010a). Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 107, 10395-10400. doi: 10.1073/pnas.0914506107
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 10395-10400
-
-
Yang, S.1
Land, M.L.2
Klingeman, D.M.3
Pelletier, D.A.4
Lu, T.Y.5
Martin, S.L.6
-
52
-
-
85028122323
-
The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
-
doi: 10.1186/1471-2180-10-135
-
Yang, S., Pelletier, D. A., Lu, T. Y., and Brown, S. D. (2010b). The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10:135. doi: 10.1186/1471-2180-10-135
-
(2010)
BMC Microbiol
, vol.10
, pp. 135
-
-
Yang, S.1
Pelletier, D.A.2
Lu, T.Y.3
Brown, S.D.4
-
53
-
-
0033395572
-
Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01
-
doi: 10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
-
Zaldivar, J., and Ingram, L. O. (1999). Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66, 203-210. doi: 10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
-
(1999)
Biotechnol. Bioeng.
, vol.66
, pp. 203-210
-
-
Zaldivar, J.1
Ingram, L.O.2
-
54
-
-
0033527357
-
Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli
-
doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
-
Zaldivar, J., Martinez, A., and Ingram, L. O. (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33. doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
-
(1999)
Biotechnol. Bioeng.
, vol.65
, pp. 24-33
-
-
Zaldivar, J.1
Martinez, A.2
Ingram, L.O.3
-
55
-
-
84886302670
-
Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels
-
doi: 10.1016/j.copbio.2013.09.008
-
Zeng, Y., Zhao, S., Yang, S., and Ding, S.-Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol. 27:8. doi: 10.1016/j.copbio.2013.09.008
-
(2014)
Curr. Opin. Biotechnol.
, vol.27
, pp. 8
-
-
Zeng, Y.1
Zhao, S.2
Yang, S.3
Ding, S.-Y.4
-
56
-
-
80052647009
-
Metabolic engineering of microbial pathways for advanced biofuels production
-
doi: 10.1016/j.copbio.2011.04.024
-
Zhang, F., Rodriguez, S., and Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Curr. Opin. Biotechnol. 22, 775-783. doi: 10.1016/j.copbio.2011.04.024
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 775-783
-
-
Zhang, F.1
Rodriguez, S.2
Keasling, J.D.3
|