-
1
-
-
24344458137
-
Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H., Long F., Ding C. Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27:1226-1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
2
-
-
84904809855
-
-
Toward Optimal Feature Selection, Technical Report 1996-77, Stanford InfoLab
-
D. Koller, M. Sahami, Toward Optimal Feature Selection, Technical Report 1996-77, Stanford InfoLab, 1996.
-
(1996)
-
-
Koller, D.1
Sahami, M.2
-
3
-
-
1942451938
-
Feature selection for high-dimensional data: a fast correlation based filter solution
-
Proceedings of the 20th International Conference on Machine Learning (ICML)
-
L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation based filter solution, in: Proceedings of the 20th International Conference on Machine Learning (ICML), 2003, pp. 856-863.
-
(2003)
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
-
4
-
-
84875404700
-
Feature selection for high-dimensional imbalanced data
-
Yin L., Ge Y., Xiao K., Wang X., Quan X. Feature selection for high-dimensional imbalanced data. Neurocomputing 2013, 105:3-11.
-
(2013)
Neurocomputing
, vol.105
, pp. 3-11
-
-
Yin, L.1
Ge, Y.2
Xiao, K.3
Wang, X.4
Quan, X.5
-
5
-
-
84884203069
-
Mutual information-based feature selection for multilabel classification
-
Doquire G., Verleysen M. Mutual information-based feature selection for multilabel classification. Neurocomputing 2013, 122:148-155.
-
(2013)
Neurocomputing
, vol.122
, pp. 148-155
-
-
Doquire, G.1
Verleysen, M.2
-
6
-
-
84904795766
-
-
Development of feature selection algorithms for high-dimensional binary data (Ph.D. thesis), Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
-
K. Javed, Development of feature selection algorithms for high-dimensional binary data (Ph.D. thesis), Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, 2012.
-
(2012)
-
-
Javed, K.1
-
7
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
8
-
-
0013326060
-
Feature selection for classification
-
Dash M., Liu H. Feature selection for classification. Intell. Data Anal. 1997, 1:131-156.
-
(1997)
Intell. Data Anal.
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
11
-
-
0242410408
-
Benchmarking attribute selection techniques for discrete class data mining
-
Hall M., Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15:1437-1447.
-
(2003)
IEEE Trans. Knowl. Data Eng.
, vol.15
, pp. 1437-1447
-
-
Hall, M.1
Holmes, G.2
-
12
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
13
-
-
0010739663
-
-
Filters, wrappers, and a boosting based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning (ICML)
-
S. Das, Filters, wrappers, and a boosting based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning (ICML), 2001, pp. 74-81.
-
(2001)
, pp. 74-81
-
-
Das, S.1
-
14
-
-
84863403768
-
Conditional likelihood maximisation. a unifying framework for information theoretic feature selection
-
Brown G., Pocock A., Zhao M.-J., Lujan M. Conditional likelihood maximisation. a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13:27-66.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.-J.3
Lujan, M.4
-
15
-
-
84864063089
-
-
Multi-task feature learning, in: NIPS
-
A. Argyriou, T. Evgeniou, M. Pontil, Multi-task feature learning, in: NIPS, 2006, pp. 41-48.
-
(2006)
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
16
-
-
85161967077
-
-
Efficient and robust feature selection via joint ℓ2,1-norms minimization, in: NIPS
-
F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint ℓ2,1-norms minimization, in: NIPS, 2010, pp. 1813-1821.
-
(2010)
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
17
-
-
34047182490
-
Filter methods
-
Springer, I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.)
-
Duch W. Filter methods. Feature Extraction: Foundations and Applications 2006, 89-117. Springer. I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.).
-
(2006)
Feature Extraction: Foundations and Applications
, pp. 89-117
-
-
Duch, W.1
-
18
-
-
79952437887
-
Empirical study of feature selection methods based on individual feature evaluation for classification problems
-
Arauzo-Azofra A., Aznarte J., Benitez J. Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Syst. Appl. 2011, 38:8170-8177.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 8170-8177
-
-
Arauzo-Azofra, A.1
Aznarte, J.2
Benitez, J.3
-
19
-
-
84900497735
-
The correctness problem: evaluating the ordering of binary features in rankings
-
Javed K., Saeed M., Babri H.A. The correctness problem: evaluating the ordering of binary features in rankings. Knowl. Inf. Syst. 2014, 39:543-563.
-
(2014)
Knowl. Inf. Syst.
, vol.39
, pp. 543-563
-
-
Javed, K.1
Saeed, M.2
Babri, H.A.3
-
20
-
-
70349290554
-
On multivariate binary data clustering and feature weighting
-
Bouguila N. On multivariate binary data clustering and feature weighting. Comput. Stat. Data Anal. 2010, 54:120-134.
-
(2010)
Comput. Stat. Data Anal.
, vol.54
, pp. 120-134
-
-
Bouguila, N.1
-
21
-
-
65549095640
-
Classification of human cancers based on DNA copy number amplification modeling
-
Myllykangas S., Tikka J., Bohling T., Knuutila S., Hollmen J. Classification of human cancers based on DNA copy number amplification modeling. BMC Med. Gen. 2008, 1.
-
(2008)
BMC Med. Gen.
, vol.1
-
-
Myllykangas, S.1
Tikka, J.2
Bohling, T.3
Knuutila, S.4
Hollmen, J.5
-
22
-
-
10044224253
-
Bernoulli mixture models for binary images
-
Proceedings of the 17th International Conference on Pattern Recognition (ICPR),
-
A. Juan, E. Vidal, Bernoulli mixture models for binary images, in: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), 2004, pp. 367-370.
-
(2004)
, pp. 367-370
-
-
Juan, A.1
Vidal, E.2
-
23
-
-
0035989814
-
Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints
-
Wilbur J., Ghosh J., Nakatsu C., Brouder S., Doerge R. Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics 2002, 58:378-386.
-
(2002)
Biometrics
, vol.58
, pp. 378-386
-
-
Wilbur, J.1
Ghosh, J.2
Nakatsu, C.3
Brouder, S.4
Doerge, R.5
-
24
-
-
84958950909
-
Behavioral market segmentation of binary guest survey data with bagged clustering
-
Proceedings of the International Conference on Artificial Neural Networks (ICANN)
-
S. Dolnicar, F. Leisch, Behavioral market segmentation of binary guest survey data with bagged clustering, in: Proceedings of the International Conference on Artificial Neural Networks (ICANN), 2001, pp. 111-118.
-
(2001)
, pp. 111-118
-
-
Dolnicar, E.1
Leisch, F.2
-
25
-
-
84881552661
-
Machine learning using Bernoulli mixture models. clustering, rule extraction and dimensionality reduction
-
Saeed M., Javed K., Babri H.A. Machine learning using Bernoulli mixture models. clustering, rule extraction and dimensionality reduction. Neurocomputing 2013, 119:366-374.
-
(2013)
Neurocomputing
, vol.119
, pp. 366-374
-
-
Saeed, M.1
Javed, K.2
Babri, H.A.3
-
26
-
-
84861510685
-
A survey on filter techniques for feature selection in gene expression microarray analysis
-
Lazar C., Taminau J., Meganck S., Steenhoff D., Coletta A., Molter C., Schaetzen V., Duque R., Bersini H., Nowe A. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9:1106-1119.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.9
, pp. 1106-1119
-
-
Lazar, C.1
Taminau, J.2
Meganck, S.3
Steenhoff, D.4
Coletta, A.5
Molter, C.6
Schaetzen, V.7
Duque, R.8
Bersini, H.9
Nowe, A.10
-
27
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza I., Larranage P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranage, P.3
-
29
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 1994, 5:537-550.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
30
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
31
-
-
83455217064
-
A new perspective for information theoretic feature selection
-
JMLR Workshop and Conference Proceedings: AISTATS
-
G. Brown, A new perspective for information theoretic feature selection, in: JMLR Workshop and Conference Proceedings: AISTATS, vol. 5, 2009, pp. 49-56.
-
(2009)
, vol.5
, pp. 49-56
-
-
Brown, G.1
-
32
-
-
38349181507
-
A fast separability based feature selection method for high-dimensional remotely sensed image classification
-
Guo B., Damper R., Gunn S., Nelson J. A fast separability based feature selection method for high-dimensional remotely sensed image classification. Pattern Recognit. 2008, 41:1653-1662.
-
(2008)
Pattern Recognit.
, vol.41
, pp. 1653-1662
-
-
Guo, B.1
Damper, R.2
Gunn, S.3
Nelson, J.4
-
34
-
-
0029503525
-
Chi2: feature selection and discretization of numeric attributes
-
Proceedings of IEEE 7th International Conference on Tools with Artificial Intelligence
-
H. Liu, R. Setiono, Chi2: feature selection and discretization of numeric attributes, in: Proceedings of IEEE 7th International Conference on Tools with Artificial Intelligence, 1995, pp. 338-391.
-
(1995)
, pp. 338-391
-
-
Liu, H.1
Setiono, R.2
-
37
-
-
84856505051
-
Feature selection based on class-dependent densities for high-dimensional binary data
-
Javed K., Babri H., Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 2012, 24:465-477.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, pp. 465-477
-
-
Javed, K.1
Babri, H.2
Saeed, M.3
-
38
-
-
23444448568
-
-
John Wiley and Sons
-
van der Heijden F., Duin R., de Ridder D., Tax D. Classification, Parameter Estimation, and State Estimation: An Engineering Approach using MATLAB 2004, John Wiley and Sons.
-
(2004)
Classification, Parameter Estimation, and State Estimation: An Engineering Approach using MATLAB
-
-
van der Heijden, F.1
Duin, R.2
de Ridder, D.3
Tax, D.4
-
39
-
-
84904788440
-
-
MathWorks, MATLAB: The Language of Technical Computing, 〈〉, 2010.
-
MathWorks, MATLAB: The Language of Technical Computing, 〈〉, 2010. http://www.mathworks.com/products/matlab/index.html.
-
-
-
-
40
-
-
51749088353
-
-
Agnostic learning vs. prior knowledge challenge, in: Proceedings of International Joint Conference on Neural Networks (IJCNN)
-
I. Guyon, A. Saffari, G. Dror, G. Cawley, Agnostic learning vs. prior knowledge challenge, in: Proceedings of International Joint Conference on Neural Networks (IJCNN), 2007, pp. 829-834.
-
(2007)
, pp. 829-834
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
41
-
-
84904815910
-
-
UCI Machine Learning Repository, 〈〉
-
A. Frank, A. Asuncion, UCI Machine Learning Repository, 〈〉, 2010. http://archive.ics.uci.edu/ml.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
42
-
-
84904813468
-
-
Quick Start Guide for Challenge Learning Object Package (CLOP), Technical Report, Graz University of Technology and Clopinet, 〈〉
-
A. Saffari, I. Guyon, Quick Start Guide for Challenge Learning Object Package (CLOP), Technical Report, Graz University of Technology and Clopinet, 〈〉, 2006. http://clopinet.com/clop/.
-
(2006)
-
-
Saffari, A.1
Guyon, I.2
-
43
-
-
84904813926
-
-
A Comparison of Numerical Optimizers for Logistic Regression, 〈〉,
-
T. Minka, A Comparison of Numerical Optimizers for Logistic Regression, 〈〉, 2003. http://research.microsoft.com/~minka/papers/.
-
(2003)
-
-
Minka, T.1
|