메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 248-260

Impact of a metric of association between two variables on performance of filters for binary data

Author keywords

Binary data; Classification; Feature selection; Filters

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER APPLICATIONS; FEATURE EXTRACTION; FILTERS (FOR FLUIDS); NEURAL NETWORKS;

EID: 84904807402     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.066     Document Type: Article
Times cited : (12)

References (43)
  • 1
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27:1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 2
    • 84904809855 scopus 로고    scopus 로고
    • Toward Optimal Feature Selection, Technical Report 1996-77, Stanford InfoLab
    • D. Koller, M. Sahami, Toward Optimal Feature Selection, Technical Report 1996-77, Stanford InfoLab, 1996.
    • (1996)
    • Koller, D.1    Sahami, M.2
  • 3
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: a fast correlation based filter solution
    • Proceedings of the 20th International Conference on Machine Learning (ICML)
    • L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation based filter solution, in: Proceedings of the 20th International Conference on Machine Learning (ICML), 2003, pp. 856-863.
    • (2003) , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 4
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • Yin L., Ge Y., Xiao K., Wang X., Quan X. Feature selection for high-dimensional imbalanced data. Neurocomputing 2013, 105:3-11.
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3    Wang, X.4    Quan, X.5
  • 5
    • 84884203069 scopus 로고    scopus 로고
    • Mutual information-based feature selection for multilabel classification
    • Doquire G., Verleysen M. Mutual information-based feature selection for multilabel classification. Neurocomputing 2013, 122:148-155.
    • (2013) Neurocomputing , vol.122 , pp. 148-155
    • Doquire, G.1    Verleysen, M.2
  • 6
    • 84904795766 scopus 로고    scopus 로고
    • Development of feature selection algorithms for high-dimensional binary data (Ph.D. thesis), Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
    • K. Javed, Development of feature selection algorithms for high-dimensional binary data (Ph.D. thesis), Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, 2012.
    • (2012)
    • Javed, K.1
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 8
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intell. Data Anal. 1997, 1:131-156.
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall M., Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15:1437-1447.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers, and a boosting based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning (ICML)
    • S. Das, Filters, wrappers, and a boosting based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning (ICML), 2001, pp. 74-81.
    • (2001) , pp. 74-81
    • Das, S.1
  • 14
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation. a unifying framework for information theoretic feature selection
    • Brown G., Pocock A., Zhao M.-J., Lujan M. Conditional likelihood maximisation. a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13:27-66.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Lujan, M.4
  • 15
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning, in: NIPS
    • A. Argyriou, T. Evgeniou, M. Pontil, Multi-task feature learning, in: NIPS, 2006, pp. 41-48.
    • (2006) , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 16
    • 85161967077 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint ℓ2,1-norms minimization, in: NIPS
    • F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint ℓ2,1-norms minimization, in: NIPS, 2010, pp. 1813-1821.
    • (2010) , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 17
    • 34047182490 scopus 로고    scopus 로고
    • Filter methods
    • Springer, I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.)
    • Duch W. Filter methods. Feature Extraction: Foundations and Applications 2006, 89-117. Springer. I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.).
    • (2006) Feature Extraction: Foundations and Applications , pp. 89-117
    • Duch, W.1
  • 18
    • 79952437887 scopus 로고    scopus 로고
    • Empirical study of feature selection methods based on individual feature evaluation for classification problems
    • Arauzo-Azofra A., Aznarte J., Benitez J. Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Syst. Appl. 2011, 38:8170-8177.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 8170-8177
    • Arauzo-Azofra, A.1    Aznarte, J.2    Benitez, J.3
  • 19
    • 84900497735 scopus 로고    scopus 로고
    • The correctness problem: evaluating the ordering of binary features in rankings
    • Javed K., Saeed M., Babri H.A. The correctness problem: evaluating the ordering of binary features in rankings. Knowl. Inf. Syst. 2014, 39:543-563.
    • (2014) Knowl. Inf. Syst. , vol.39 , pp. 543-563
    • Javed, K.1    Saeed, M.2    Babri, H.A.3
  • 20
    • 70349290554 scopus 로고    scopus 로고
    • On multivariate binary data clustering and feature weighting
    • Bouguila N. On multivariate binary data clustering and feature weighting. Comput. Stat. Data Anal. 2010, 54:120-134.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 120-134
    • Bouguila, N.1
  • 22
    • 10044224253 scopus 로고    scopus 로고
    • Bernoulli mixture models for binary images
    • Proceedings of the 17th International Conference on Pattern Recognition (ICPR),
    • A. Juan, E. Vidal, Bernoulli mixture models for binary images, in: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), 2004, pp. 367-370.
    • (2004) , pp. 367-370
    • Juan, A.1    Vidal, E.2
  • 23
    • 0035989814 scopus 로고    scopus 로고
    • Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints
    • Wilbur J., Ghosh J., Nakatsu C., Brouder S., Doerge R. Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics 2002, 58:378-386.
    • (2002) Biometrics , vol.58 , pp. 378-386
    • Wilbur, J.1    Ghosh, J.2    Nakatsu, C.3    Brouder, S.4    Doerge, R.5
  • 24
    • 84958950909 scopus 로고    scopus 로고
    • Behavioral market segmentation of binary guest survey data with bagged clustering
    • Proceedings of the International Conference on Artificial Neural Networks (ICANN)
    • S. Dolnicar, F. Leisch, Behavioral market segmentation of binary guest survey data with bagged clustering, in: Proceedings of the International Conference on Artificial Neural Networks (ICANN), 2001, pp. 111-118.
    • (2001) , pp. 111-118
    • Dolnicar, E.1    Leisch, F.2
  • 25
    • 84881552661 scopus 로고    scopus 로고
    • Machine learning using Bernoulli mixture models. clustering, rule extraction and dimensionality reduction
    • Saeed M., Javed K., Babri H.A. Machine learning using Bernoulli mixture models. clustering, rule extraction and dimensionality reduction. Neurocomputing 2013, 119:366-374.
    • (2013) Neurocomputing , vol.119 , pp. 366-374
    • Saeed, M.1    Javed, K.2    Babri, H.A.3
  • 27
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larranage P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranage, P.3
  • 29
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 1994, 5:537-550.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 537-550
    • Battiti, R.1
  • 30
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 31
    • 83455217064 scopus 로고    scopus 로고
    • A new perspective for information theoretic feature selection
    • JMLR Workshop and Conference Proceedings: AISTATS
    • G. Brown, A new perspective for information theoretic feature selection, in: JMLR Workshop and Conference Proceedings: AISTATS, vol. 5, 2009, pp. 49-56.
    • (2009) , vol.5 , pp. 49-56
    • Brown, G.1
  • 32
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability based feature selection method for high-dimensional remotely sensed image classification
    • Guo B., Damper R., Gunn S., Nelson J. A fast separability based feature selection method for high-dimensional remotely sensed image classification. Pattern Recognit. 2008, 41:1653-1662.
    • (2008) Pattern Recognit. , vol.41 , pp. 1653-1662
    • Guo, B.1    Damper, R.2    Gunn, S.3    Nelson, J.4
  • 34
    • 0029503525 scopus 로고
    • Chi2: feature selection and discretization of numeric attributes
    • Proceedings of IEEE 7th International Conference on Tools with Artificial Intelligence
    • H. Liu, R. Setiono, Chi2: feature selection and discretization of numeric attributes, in: Proceedings of IEEE 7th International Conference on Tools with Artificial Intelligence, 1995, pp. 338-391.
    • (1995) , pp. 338-391
    • Liu, H.1    Setiono, R.2
  • 37
    • 84856505051 scopus 로고    scopus 로고
    • Feature selection based on class-dependent densities for high-dimensional binary data
    • Javed K., Babri H., Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 2012, 24:465-477.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , pp. 465-477
    • Javed, K.1    Babri, H.2    Saeed, M.3
  • 39
    • 84904788440 scopus 로고    scopus 로고
    • MathWorks, MATLAB: The Language of Technical Computing, 〈〉, 2010.
    • MathWorks, MATLAB: The Language of Technical Computing, 〈〉, 2010. http://www.mathworks.com/products/matlab/index.html.
  • 40
    • 51749088353 scopus 로고    scopus 로고
    • Agnostic learning vs. prior knowledge challenge, in: Proceedings of International Joint Conference on Neural Networks (IJCNN)
    • I. Guyon, A. Saffari, G. Dror, G. Cawley, Agnostic learning vs. prior knowledge challenge, in: Proceedings of International Joint Conference on Neural Networks (IJCNN), 2007, pp. 829-834.
    • (2007) , pp. 829-834
    • Guyon, I.1    Saffari, A.2    Dror, G.3    Cawley, G.4
  • 41
    • 84904815910 scopus 로고    scopus 로고
    • UCI Machine Learning Repository, 〈〉
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, 〈〉, 2010. http://archive.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 42
    • 84904813468 scopus 로고    scopus 로고
    • Quick Start Guide for Challenge Learning Object Package (CLOP), Technical Report, Graz University of Technology and Clopinet, 〈〉
    • A. Saffari, I. Guyon, Quick Start Guide for Challenge Learning Object Package (CLOP), Technical Report, Graz University of Technology and Clopinet, 〈〉, 2006. http://clopinet.com/clop/.
    • (2006)
    • Saffari, A.1    Guyon, I.2
  • 43
    • 84904813926 scopus 로고    scopus 로고
    • A Comparison of Numerical Optimizers for Logistic Regression, 〈〉,
    • T. Minka, A Comparison of Numerical Optimizers for Logistic Regression, 〈〉, 2003. http://research.microsoft.com/~minka/papers/.
    • (2003)
    • Minka, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.