메뉴 건너뛰기




Volumn 119, Issue , 2013, Pages 366-374

Machine learning using Bernoulli mixture models: Clustering, rule extraction and dimensionality reduction

Author keywords

Bernoulli mixture models; Binary data; Clustering; Dimensionality reduction; Feature transformation; Rule extraction

Indexed keywords

BERNOULLI MIXTURES; BINARY DATA; CLUSTERING; DIMENSIONALITY REDUCTION; FEATURE TRANSFORMATIONS; RULE EXTRACTION;

EID: 84881552661     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.021     Document Type: Article
Times cited : (20)

References (47)
  • 7
    • 70349290554 scopus 로고    scopus 로고
    • On multivariate binary data clustering and feature weighting
    • Bouguila N. On multivariate binary data clustering and feature weighting. Comput. Stat. Data Anal. 2010, 54(1):120-134.
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.1 , pp. 120-134
    • Bouguila, N.1
  • 8
    • 0033628578 scopus 로고    scopus 로고
    • Practical identifiability of finite mixtures of multivariate Bernoulli distributions
    • Carreira-Perpinán M.A., Renals S.A. Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Comput. 2000, 12(1):141-152.
    • (2000) Neural Comput. , vol.12 , Issue.1 , pp. 141-152
    • Carreira-Perpinán, M.A.1    Renals, S.A.2
  • 9
    • 84881550767 scopus 로고    scopus 로고
    • Subspace clustering of high-dimensional binary data-a probabilistic approach
    • SIAM International Conference on Data Mining
    • A. Patrikainen, H. Mannila, Subspace clustering of high-dimensional binary data-a probabilistic approach, in: Workshop on Clustering High-dimensional Data and Its Applications, SIAM International Conference on Data Mining, 2004, pp. 57-65.
    • (2004) Workshop on Clustering High-dimensional Data and Its Applications , pp. 57-65
    • Patrikainen, A.1    Mannila, H.2
  • 10
    • 0036887599 scopus 로고    scopus 로고
    • On the use of Bernoulli mixture models for text classification
    • Juan A., Vidal E. On the use of Bernoulli mixture models for text classification. Pattern Recognition 2002, 35(12):2705-2710.
    • (2002) Pattern Recognition , vol.35 , Issue.12 , pp. 2705-2710
    • Juan, A.1    Vidal, E.2
  • 12
    • 21144442615 scopus 로고    scopus 로고
    • Application of multinomial mixture model to text classification
    • IbPRIA 2003, Lecture Notes in Computer Science, vol. 2652, Springer-Verlag, Berlin, Heidelberg
    • J. Novovičová, A. Malík, Application of multinomial mixture model to text classification, in: Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2003, Lecture Notes in Computer Science, vol. 2652, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 646-652.
    • (2003) Iberian Conference on Pattern Recognition and Image Analysis , pp. 646-652
    • Novovičová, J.1    Malík, A.2
  • 16
    • 38149031767 scopus 로고    scopus 로고
    • Explicit modelling of invariances in Bernoulli mixtures for binary images
    • IbPRIA 2007, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg
    • V. Romero, A. Giménez, A. Juan, Explicit modelling of invariances in Bernoulli mixtures for binary images, in: 3rd Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2007, Lecture Notes in Computer Science, vol. 4477, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 539-546.
    • (2007) 3rd Iberian Conference on Pattern Recognition and Image Analysis , vol.4477 , pp. 539-546
    • Romero, V.1    Giménez, A.2    Juan, A.3
  • 17
    • 34548395146 scopus 로고    scopus 로고
    • Multivariate Bernoulli mixture models with application to postmortem tissue studies in schizophrenia
    • Sun Z., Rosen O., Sampson A. Multivariate Bernoulli mixture models with application to postmortem tissue studies in schizophrenia. Biometrics 2007, 63:901-909.
    • (2007) Biometrics , vol.63 , pp. 901-909
    • Sun, Z.1    Rosen, O.2    Sampson, A.3
  • 20
    • 65549095640 scopus 로고    scopus 로고
    • Classification of human cancers based on DNA copy number amplification modelling
    • Myllykangas S., Tikka J., Böhling T., Knuutila S., Hollmén J. Classification of human cancers based on DNA copy number amplification modelling. BMC Med. Genomics 2008, 1(15):1-13.
    • (2008) BMC Med. Genomics , vol.1 , Issue.15 , pp. 1-13
    • Myllykangas, S.1    Tikka, J.2    Böhling, T.3    Knuutila, S.4    Hollmén, J.5
  • 22
    • 0242496221 scopus 로고    scopus 로고
    • Beyond independence: Probabilistic models for query approximation on binary transaction data
    • Pavlov D., Mannila H., Smyth P. Beyond independence: Probabilistic models for query approximation on binary transaction data. IEEE Trans. Knowl. Data Eng. 2003, 15(6):1409-1421.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.6 , pp. 1409-1421
    • Pavlov, D.1    Mannila, H.2    Smyth, P.3
  • 24
    • 84881558123 scopus 로고    scopus 로고
    • Bernoulli mixture models for Markov blanket filtering and classification
    • WCCI 2008 Workshop on Causality, Hong Kong
    • M. Saeed, Bernoulli mixture models for Markov blanket filtering and classification, in: JMLR Workshop and Conference Proceedings, WCCI 2008 Workshop on Causality, Hong Kong, vol. 3, 2008.
    • (2008) JMLR Workshop and Conference Proceedings , vol.3
    • Saeed, M.1
  • 25
    • 84881554138 scopus 로고    scopus 로고
    • Hybrid learning using mixture models and artificial neural networks
    • Hands-on Pattern Recognition Challenges in Machine Learning, Microtome Publishing, USA
    • M. Saeed, Hybrid learning using mixture models and artificial neural networks. Hands-on Pattern Recognition Challenges in Machine Learning, vol. 1, Microtome Publishing, USA, 2011.
    • (2011) , vol.1
    • Saeed, M.1
  • 26
    • 84871278847 scopus 로고    scopus 로고
    • The use of Bernoulli mixture models for identifying corners of a hypercube and extracting Boolean rules from data
    • JMLR Workshop and Conference Proceedings, NIPS 2008 Workshop on Causality: Objectives and Assessment, Canada, see 〈〉.
    • M. Saeed, The use of Bernoulli mixture models for identifying corners of a hypercube and extracting Boolean rules from data, in: JMLR Workshop and Conference Proceedings, NIPS 2008 Workshop on Causality: Objectives and Assessment, Canada, vol. 6, 2010, see 〈〉. http://jmlr.csail.mit.edu/proceedings/papers/v6/.
    • (2010) , vol.6
    • Saeed, M.1
  • 28
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6(2):461-464.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 33748528133 scopus 로고    scopus 로고
    • A comparative investigation on model selection in independent factor analysis
    • An Y., Hu X., Xu L. A comparative investigation on model selection in independent factor analysis. J. Math. Model. Algorithms 2006, 5:447-473.
    • (2006) J. Math. Model. Algorithms , vol.5 , pp. 447-473
    • An, Y.1    Hu, X.2    Xu, L.3
  • 31
    • 77956483883 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system, best harmony learning, and five action circling: a special issue on Emerging themes on information theory and Bayesian approach
    • Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling: a special issue on Emerging themes on information theory and Bayesian approach. J. Front. Electr. Electron. Eng. China 2010, 5(3):281-328.
    • (2010) J. Front. Electr. Electron. Eng. China , vol.5 , Issue.3 , pp. 281-328
    • Xu, L.1
  • 32
    • 84863267071 scopus 로고    scopus 로고
    • On essential topics of BYY harmony learning. Current status, challenging issues, and gene analysis applications
    • Xu L. On essential topics of BYY harmony learning. Current status, challenging issues, and gene analysis applications. J. Front. Electr. Electron. Eng. China 2012, 7(1):147-196.
    • (2012) J. Front. Electr. Electron. Eng. China , vol.7 , Issue.1 , pp. 147-196
    • Xu, L.1
  • 34
    • 33750270802 scopus 로고    scopus 로고
    • Predicting essential components of signal transduction networks. a dynamic model of guard cell abscisic acid signaling
    • Li S., Assmann1 S.M., Albert R. Predicting essential components of signal transduction networks. a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 2006, 4(10):1732-1748.
    • (2006) PLoS Biol. , vol.4 , Issue.10 , pp. 1732-1748
    • Li, S.1    Assmann1, S.M.2    Albert, R.3
  • 37
    • 84881555832 scopus 로고    scopus 로고
    • Reverse engineering of asynchronous Boolean networks via minimum explanatory set and maximum likelihood
    • NIPS 2008 Workshop on Causality: Objectives and Assessment, Canada, see 〈〉.
    • C. Zheng, Z. Geng, Reverse engineering of asynchronous Boolean networks via minimum explanatory set and maximum likelihood, in: JMLR Workshop and Conference Proceedings, NIPS 2008 Workshop on Causality: Objectives and Assessment, Canada, 2010, see 〈〉. http://jmlr.csail.mit.edu/proceedings/papers/v6/.
    • (2010) JMLR Workshop and Conference Proceedings
    • Zheng, C.1    Geng, Z.2
  • 38
    • 84856505051 scopus 로고    scopus 로고
    • Feature selection based on class-dependent densities for high-dimensional binary data
    • Javed K., Babri H.A., Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 2012, 24(3):465-477.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.3 , pp. 465-477
    • Javed, K.1    Babri, H.A.2    Saeed, M.3
  • 41
    • 84881554383 scopus 로고    scopus 로고
    • I. WCCI, Causality Challenge #1: Causation and Prediction, see 〈〉
    • I. WCCI, Causality Challenge #1: Causation and Prediction, see 〈〉 (2008). http://www.causality.inf.ethz.ch/challenge.php.
    • (2008)
  • 42
    • 77958066899 scopus 로고    scopus 로고
    • Causal and non-causal feature selection for ridge regression
    • WCCI 2008 Workshop on Causality, Hong Kong
    • G. Cawley, Causal and non-causal feature selection for ridge regression, in: JMLR Workshop and Conference Proceedings, WCCI 2008 Workshop on Causality, Hong Kong, vol. 3, 2008.
    • (2008) JMLR Workshop and Conference Proceedings , vol.3
    • Cawley, G.1
  • 44
    • 40649109726 scopus 로고    scopus 로고
    • Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge
    • Guyon I., Saffari A., Dror G., Cawley G. Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge. Neural Networks 2008, 21(2-3):544-550.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 544-550
    • Guyon, I.1    Saffari, A.2    Dror, G.3    Cawley, G.4
  • 45
    • 84881547263 scopus 로고    scopus 로고
    • Hybrid Approach for Learning
    • fact sheet available at: 〈〉.
    • M. Saeed, Hybrid Approach for Learning, 2007, fact sheet available at: 〈〉. http://clopinet.com/isabelle/Projects/agnostic/.
    • (2007)
    • Saeed, M.1
  • 46
    • 47349132736 scopus 로고    scopus 로고
    • Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets
    • Vancouver, Canada, available at: 〈〉.
    • R.W. Lutz, Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets, in: Proceedings of International Joint Conference on Neural Networks, Vancouver, Canada, 2006, pp. 2966-2969, available at: 〈〉. http://stat.ethz.ch/~lutz/publ.
    • (2006) Proceedings of International Joint Conference on Neural Networks , pp. 2966-2969
    • Lutz, R.W.1
  • 47
    • 84881552910 scopus 로고    scopus 로고
    • Modified Multi-class SVM Formulation
    • fact sheet available at: 〈〉.
    • V. Franc, Modified Multi-class SVM Formulation; Efficient LOO Computation, 2007, fact sheet available at: 〈〉. http://clopinet.com/isabelle/Projects/agnostic/.
    • (2007) Efficient LOO Computation
    • Franc, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.