-
1
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks, 5(4):537-550.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
2
-
-
0011411948
-
On the applications of mobius inversion in combinatorial analysis
-
Bender, E. A. and Goldman, J. R. (1975). On the Applications of Mobius Inversion in Combinatorial Analysis. Amer. Math. Monthly, 82:789-803.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 789-803
-
-
Bender, E.A.1
Goldman, J.R.2
-
4
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
Fleuret, F. (2004). Fast Binary Feature Selection with Conditional Mutual Information. The Journal of Machine Learning Research, 5:1531-1555.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
5
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(7-8):1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.7-8
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
6
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak, N. and Choi, C. (2002). Input Feature Selection for Classification Problems. Neural Networks, IEEE Transactions on, 13(1):143-159.
-
(2002)
Neural Networks, IEEE Transactions on
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.2
-
7
-
-
34948823930
-
Conditional infomax learning: An integrated framework for feature extraction and fusion
-
Lin, D. and Tang, X. (2006). Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion. In European Conference on Computer Vision.
-
(2006)
European Conference on Computer Vision
-
-
Lin, D.1
Tang, X.2
-
8
-
-
84937351341
-
Multivariate information transmission
-
McGill, W. (1954). Multivariate information transmission. IEEE Trans. Inf. Theory, 4(4):93-111.
-
(1954)
IEEE Trans. Inf. Theory
, vol.4
, Issue.4
, pp. 93-111
-
-
McGill, W.1
-
9
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
-
Peng, H., Long, F., and Ding, C. (2005). Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and MinRedundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226-1238.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
10
-
-
34347166234
-
On the foundations of combinatorial theory I. Theory of mobius functions
-
Rota, G. (1964). On the Foundations of Combinatorial Theory I. Theory of Mobius Functions. Probability Theory and Related Fields, 2:340-368.
-
(1964)
Probability Theory and Related Fields
, vol.2
, pp. 340-368
-
-
Rota, G.1
-
11
-
-
84856043672
-
A mathematical theory of communication
-
Shannon, C. (1948). A mathematical theory of communication, Bell Syst. Tech. J, 27(3):379-423.
-
(1948)
Bell Syst. Tech. J
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.1
-
13
-
-
0242484358
-
Data visualization and feature selection: New algorithms for nongaussian data
-
Yang, H. and Moody, J. (1999). Data Visualization and Feature Selection: New Algorithms for Nongaussian Data. Advances in Neural Information Processing Systems, 12.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Yang, H.1
Moody, J.2
|