메뉴 건너뛰기




Volumn 207, Issue , 2006, Pages 89-117

Filter methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34047182490     PISSN: 14349922     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-35488-8_4     Document Type: Article
Times cited : (75)

References (54)
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. on Neural Networks, 5:537-550, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • D.A. Bell and H. Wang. A formalism for relevance and its application in feature subset selection. Machine Learning, 41:175-195, 2000.
    • (2000) Machine Learning , vol.41 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 6
    • 0029407869 scopus 로고
    • An extension of the jeffreys-matusita distance to multiclass cases for feature selection
    • L. Bruzzone, F. Roll, and S.B. Serpico. An extension of the jeffreys-matusita distance to multiclass cases for feature selection. IEEE Transactions on Geoscience and Remote Sensing, 33(6):1318-1321, 1995.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.6 , pp. 1318-1321
    • Bruzzone, L.1    Roll, F.2    Serpico, S.B.3
  • 9
    • 0004184934 scopus 로고
    • Chapman and Hall/CRC Press, Berlin, Heidelberg, New York
    • D.R. Cox and D.V. Hinkley. Theoretical Statistics. Chapman and Hall/CRC Press, Berlin, Heidelberg, New York, 1974.
    • (1974) Theoretical Statistics
    • Cox, D.R.1    Hinkley, D.V.2
  • 10
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu. Consistency-based search in feature selection. Artificial Intelligence, 151:155-176, 2003.
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 11
    • 0025798330 scopus 로고
    • A distance-based attribute selection measure for decision tree induction
    • R.L. de Mantaras. A distance-based attribute selection measure for decision tree induction. Machine Learning Journal, 6:81-92, 1991.
    • (1991) Machine Learning Journal , vol.6 , pp. 81-92
    • de Mantaras, R.L.1
  • 13
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 12:277-306, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Gra̧bczewski, K.3
  • 14
    • 34047127195 scopus 로고    scopus 로고
    • W. Duch and L. Itert. A posteriori corrections to classification methods. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Computing, pages 406-411. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2002.
    • W. Duch and L. Itert. A posteriori corrections to classification methods. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Computing, pages 406-411. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2002.
  • 15
    • 21244495584 scopus 로고    scopus 로고
    • Computational intelligence methods for understanding of data
    • W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understanding of data. Proceedings of the IEEE, 92(5):771-805, 2004.
    • (2004) Proceedings of the IEEE , vol.92 , Issue.5 , pp. 771-805
    • Duch, W.1    Setiono, R.2    Zurada, J.3
  • 18
    • 3543121719 scopus 로고    scopus 로고
    • Lower and upper bounds for misclassification probability based on renyis information
    • 305-317, ISSN 1533-7928
    • D. Erdogmus and J.C. Principe. Lower and upper bounds for misclassification probability based on renyis information. Journal of VLSI Signal Processing Systems, 37(2-3):305-317, 2004. ISSN 1533-7928.
    • (2004) Journal of VLSI Signal Processing Systems , vol.37 , Issue.2-3
    • Erdogmus, D.1    Principe, J.C.2
  • 19
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 26
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • J.A. Hanley and B.J. McNcil. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 143:29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNcil, B.J.2
  • 27
    • 0003339749 scopus 로고
    • Methods for aggregating opinions
    • H. Jungermann and G. de Zeeuw, editors, D. Reidel Publishing, Dordrecht, Holland
    • R.M. Hogarth. Methods for aggregating opinions. In H. Jungermann and G. de Zeeuw, editors, Decision Making and Change in Human Affairs. D. Reidel Publishing, Dordrecht, Holland, 1977.
    • (1977) Decision Making and Change in Human Affairs
    • Hogarth, R.M.1
  • 29
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-91, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 30
    • 0031224390 scopus 로고    scopus 로고
    • Use of contextual information for feature ranking and discretization
    • S.J. Hong. Use of contextual information for feature ranking and discretization. IEEE Transactions on Knowledge and Data Engineering, 9:718-730, 1997.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , pp. 718-730
    • Hong, S.J.1
  • 31
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • G.V. Kass. An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29:119-127, 1980.
    • (1980) Applied Statistics , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 32
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1996.
    • (1996) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 33
    • 85077432727 scopus 로고
    • On biases in estimating the multivalued attributes
    • San Mateo, CA, Morgan Kaufmann
    • I. Kononenko. On biases in estimating the multivalued attributes. In Proceedings of IJCAI-95, Montreal, pages 1034-1040, San Mateo, CA, 1995. Morgan Kaufmann.
    • (1995) Proceedings of IJCAI-95, Montreal , pp. 1034-1040
    • Kononenko, I.1
  • 35
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • N. Kwak and C-H. Choi. Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13:143-159, 2002b.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 36
    • 0003680739 scopus 로고
    • An Introduction to Kolmogorov Complexity and Its Applications
    • Springer, Berlin, Heidelberg, New York
    • M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Text and Monographs in Computer Science. Springer, Berlin, Heidelberg, New York, 1993.
    • (1993) Text and Monographs in Computer Science
    • Li, M.1    Vitányi, P.2
  • 40
    • 0032654509 scopus 로고    scopus 로고
    • A statistic to estimate the variance of the histogram based mutual information estimator based on dependent pairs of observations
    • R. Moddemeijer. A statistic to estimate the variance of the histogram based mutual information estimator based on dependent pairs of observations. Signal Processing, 75:51-63, 1999.
    • (1999) Signal Processing , vol.75 , pp. 51-63
    • Moddemeijer, R.1
  • 41
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • San Francisco, CA, Morgan Kaufmann
    • A.Y. Ng. On feature selection: learning with exponentially many irrelevant features as training examples. In Proceedings of the 15th International Conference on Machine Learning, pages 404-412, San Francisco, CA, 1998. Morgan Kaufmann.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 44
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of relieff and rrelieff. Machine Learning, 53:23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 46
    • 0003632935 scopus 로고
    • 8th ed. Iowa State University Press, Berlin, Heidelberg, New York
    • G.W. Snedecorand and W.G. Cochran. Statistical Methods, 8th ed. Iowa State University Press, Berlin, Heidelberg, New York, 1989.
    • (1989) Statistical Methods
    • Snedecorand, G.W.1    Cochran, W.G.2
  • 47
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J.A. Swets. Measuring the accuracy of diagnostic systems. Proceedings of the IEEE, 240(5):1285-1293, 1988.
    • (1988) Proceedings of the IEEE , vol.240 , Issue.5 , pp. 1285-1293
    • Swets, J.A.1
  • 48
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski and A. Skowron. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24:833-849, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 49
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non parametric mutual information maximization
    • ISSN 1533-7928
    • K. Torkkola. Feature extraction by non parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003. ISSN 1533-7928.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 50
    • 0001172625 scopus 로고
    • Note on optimal selection of independent binary-valued features for pattern recognition
    • G.T. Toussaint. Note on optimal selection of independent binary-valued features for pattern recognition. IEEE Transactions on Information Theory, 17:618-618, 1971.
    • (1971) IEEE Transactions on Information Theory , vol.17 , pp. 618-618
    • Toussaint, G.T.1
  • 53
    • 0015607609 scopus 로고
    • Feature evaluation with measures of probabilistic dependence
    • T.R. Vilmansen. Feature evaluation with measures of probabilistic dependence. IEEE Transactions on Computers, 22:381-388, 1973.
    • (1973) IEEE Transactions on Computers , vol.22 , pp. 381-388
    • Vilmansen, T.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.