메뉴 건너뛰기




Volumn 41, Issue 5, 2008, Pages 1653-1662

A fast separability-based feature-selection method for high-dimensional remotely sensed image classification

Author keywords

Feature selection; Hyperspectral image classification; Mutual information; Remote sensing

Indexed keywords

CLASSIFICATION (OF INFORMATION); ERROR ANALYSIS; HEURISTIC ALGORITHMS; IMAGE PROCESSING; OPTIMIZATION; REMOTE SENSING;

EID: 38349181507     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.11.007     Document Type: Article
Times cited : (106)

References (28)
  • 1
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application, and small sample performance
    • Jain A., and Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 2 (1997) 153-158
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A., and Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 97 1-2 (1997) 245-271
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 3
    • 38349161231 scopus 로고    scopus 로고
    • AVIRIS, Airborne visible/infrared imaging spectrometer. [Online]. Available: 〈http://aviris.jpl.nasa.gov/〉.
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14 1 (1968) 55-63
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 5
    • 0031234752 scopus 로고    scopus 로고
    • Spectral band selection for visible-near infrared remote sensing: spectral-spatial resolution tradeoffs
    • Price J. Spectral band selection for visible-near infrared remote sensing: spectral-spatial resolution tradeoffs. IEEE Trans. Geosci. Remote Sensing 35 5 (1997) 1277-1285
    • (1997) IEEE Trans. Geosci. Remote Sensing , vol.35 , Issue.5 , pp. 1277-1285
    • Price, J.1
  • 6
    • 0031642793 scopus 로고    scopus 로고
    • M. Velez-Reyes, L. Jimenez, Subset selection analysis for the reduction of hyperspectral imagery, in: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 3, Seattle, WA, 1998, pp. 1577-1581.
  • 7
    • 0031620238 scopus 로고    scopus 로고
    • G. Petrie, P. Heasler, T. Warner, Optimal band selection strategies for hyperspectral data sets, in: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 3, Seattle, WA, 1998, pp. 1582-1584.
  • 8
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Chang C.-I., Qian D., Sun T.-L., and Althouse M. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 37 6 (1999) 2631-2641
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Qian, D.2    Sun, T.-L.3    Althouse, M.4
  • 9
    • 85143191148 scopus 로고    scopus 로고
    • N. Keshava, Best bands selection for detection in hyperspectral processing, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'01, vol. 5, Salt Lake City, UT, 2001, pp. 3149-3152.
  • 10
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Serpico S., and Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sensing 39 7 (2001) 1360-1367
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.1    Bruzzone, L.2
  • 12
    • 0037934716 scopus 로고    scopus 로고
    • Automatic reduction of hyperspectral imagery using wavelet spectral analysis
    • Kaewpijit S., Moigne J.L., and El-Ghazawi T. Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Trans. Geosci. Remote Sensing 41 4 (2003) 863-871
    • (2003) IEEE Trans. Geosci. Remote Sensing , vol.41 , Issue.4 , pp. 863-871
    • Kaewpijit, S.1    Moigne, J.L.2    El-Ghazawi, T.3
  • 13
    • 84945278269 scopus 로고    scopus 로고
    • Band selection and its impact on target detection and classification in hyperspectral image analysis
    • Greenbelt, MD
    • Qian D. Band selection and its impact on target detection and classification in hyperspectral image analysis. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data. Greenbelt, MD (2003) 374-377
    • (2003) IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data , pp. 374-377
    • Qian, D.1
  • 14
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • Bajcsy P., and Groves P. Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sensing J. 70 7 (2004) 793-802
    • (2004) Photogramm. Eng. Remote Sensing J. , vol.70 , Issue.7 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., and Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sensing 42 8 (2004) 1778-1790
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 0027788411 scopus 로고
    • Selection of optimum bands from TM scenes through mutual information analysis
    • Conesea C., and Masellia F. Selection of optimum bands from TM scenes through mutual information analysis. ISPRS J. Photogrammetry Remote Sensing 48 3 (1993) 2-11
    • (1993) ISPRS J. Photogrammetry Remote Sensing , vol.48 , Issue.3 , pp. 2-11
    • Conesea, C.1    Masellia, F.2
  • 17
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Guo B., Gunn S.R., Damper R.I., and Nelson J.B. Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sensing Lett. 3 4 (2006) 522-526
    • (2006) IEEE Geosci. Remote Sensing Lett. , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.B.4
  • 18
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 4 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 19
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.-H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 20
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A.M., and Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 2 (1986) 1134-1140
    • (1986) Phys. Rev. A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 22
    • 84915005479 scopus 로고
    • Probability of error, equivocation and the Chernoff bound
    • Hellman M., and Raviv J. Probability of error, equivocation and the Chernoff bound. IEEE Trans. Inf. Theory 16 4 (1970) 368-372
    • (1970) IEEE Trans. Inf. Theory , vol.16 , Issue.4 , pp. 368-372
    • Hellman, M.1    Raviv, J.2
  • 23
    • 0028273691 scopus 로고
    • Relation between entropy and error probability
    • Feder M., and Merhav N. Relation between entropy and error probability. IEEE Trans. Inf. Theory 40 1 (1994) 259-266
    • (1994) IEEE Trans. Inf. Theory , vol.40 , Issue.1 , pp. 259-266
    • Feder, M.1    Merhav, N.2
  • 24
    • 38349116404 scopus 로고    scopus 로고
    • D. Landgrebe, On information extraction principles for hyperspectral data: a white paper, Technical Report, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 1997. [Online]. Available: 〈http://dynamo.ecn.purdue.edu/∼landgreb/whitepaper.pdf〉.
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V.N. Support-vector networks. Mach. Learn. 20 3 (1995) 1-25
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 1-25
    • Cortes, C.1    Vapnik, V.N.2
  • 28
    • 33847151380 scopus 로고    scopus 로고
    • B. Guo, S.R. Gunn, R.I. Damper, J.B. Nelson, Adaptive band selection for hyperspectral image fusion using mutual information, in: Proceedings of Eighth International Conference on Information Fusion, vol. 1, Philadelphia, PA, 2005, pp. 630-637.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.