메뉴 건너뛰기




Volumn 32, Issue 7, 2014, Pages 381-388

Force-controlled manipulation of single cells: From AFM to FluidFM

Author keywords

Atomic force microscopy; Fluidic force microscopy; Single cell analysis; Single cell perturbation

Indexed keywords

ATOMIC FORCE MICROSCOPY; CELLS; CYTOLOGY; NANOCANTILEVERS;

EID: 84903578209     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.04.008     Document Type: Review
Times cited : (187)

References (93)
  • 1
    • 0012618901 scopus 로고
    • Atomic force microscope
    • Binnig G., et al. Atomic force microscope. Phys. Rev. Lett. 1986, 56:930-933.
    • (1986) Phys. Rev. Lett. , vol.56 , pp. 930-933
    • Binnig, G.1
  • 2
    • 34848919386 scopus 로고
    • Surface studies by scanning tunneling microscopy
    • Binnig G., et al. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982, 49:57-61.
    • (1982) Phys. Rev. Lett. , vol.49 , pp. 57-61
    • Binnig, G.1
  • 3
    • 77952760920 scopus 로고
    • Microfabrication of cantilever styli for the atomic force microscope
    • Albrecht T.R., et al. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. 1990, 8:3386-3396.
    • (1990) J. Vac. Sci. Technol. , vol.8 , pp. 3386-3396
    • Albrecht, T.R.1
  • 4
    • 36549096102 scopus 로고
    • Novel optical approach to atomic force microscopy
    • Meyer G., Amer N.M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 1988, 53:1045-1047.
    • (1988) Appl. Phys. Lett. , vol.53 , pp. 1045-1047
    • Meyer, G.1    Amer, N.M.2
  • 6
    • 84855813503 scopus 로고    scopus 로고
    • Biosensing using dynamic-mode cantilever sensors: a review
    • Johnson B.N., Mutharasan R. Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelect. 2012, 32:1-18.
    • (2012) Biosens. Bioelect. , vol.32 , pp. 1-18
    • Johnson, B.N.1    Mutharasan, R.2
  • 7
    • 84872078535 scopus 로고    scopus 로고
    • Biosensors based on nanomechanical systems
    • Tamayo J., et al. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42:1287-1311.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 1287-1311
    • Tamayo, J.1
  • 8
    • 84880203195 scopus 로고    scopus 로고
    • Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors
    • Longo G., et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nano 2013, 8:522-526.
    • (2013) Nat. Nano , vol.8 , pp. 522-526
    • Longo, G.1
  • 9
    • 66749155362 scopus 로고    scopus 로고
    • FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond
    • Meister A., et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9:2501-2507.
    • (2009) Nano Lett. , vol.9 , pp. 2501-2507
    • Meister, A.1
  • 10
    • 0039328589 scopus 로고
    • Atomic force microscope with integrated optical microscope for biological applications
    • Putman C.A.J., et al. Atomic force microscope with integrated optical microscope for biological applications. Rev. Sci. Instrum. 1992, 63:1914-1917.
    • (1992) Rev. Sci. Instrum. , vol.63 , pp. 1914-1917
    • Putman, C.A.J.1
  • 11
    • 4243504131 scopus 로고
    • Acceleration and trapping of particles by radiation pressure
    • Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24:156-159.
    • (1970) Phys. Rev. Lett. , vol.24 , pp. 156-159
    • Ashkin, A.1
  • 12
    • 50349116112 scopus 로고
    • The physical properties of cytoplasm: a study by means of the magnetic particle method, part 1. Experimental
    • Crick F.H.C., Hughes A.F.W. The physical properties of cytoplasm: a study by means of the magnetic particle method, part 1. Experimental. Exp. Cell Res. 1950, 1:37-80.
    • (1950) Exp. Cell Res. , vol.1 , pp. 37-80
    • Crick, F.H.C.1    Hughes, A.F.W.2
  • 13
    • 0026495432 scopus 로고
    • Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads
    • Smith S.B., et al. Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 1992, 258:1122-1126.
    • (1992) Science , vol.258 , pp. 1122-1126
    • Smith, S.B.1
  • 14
    • 79957802389 scopus 로고    scopus 로고
    • Shaping the future of manipulation
    • Dholakia K., Cizmar T. Shaping the future of manipulation. Nat. Photonics 2011, 5:335-342.
    • (2011) Nat. Photonics , vol.5 , pp. 335-342
    • Dholakia, K.1    Cizmar, T.2
  • 15
    • 84876940794 scopus 로고    scopus 로고
    • Cell signaling experiments driven by optical manipulation
    • Difato F., et al. Cell signaling experiments driven by optical manipulation. Int. J. Mol. Sci. 2013, 14:8963-8984.
    • (2013) Int. J. Mol. Sci. , vol.14 , pp. 8963-8984
    • Difato, F.1
  • 16
    • 0000754776 scopus 로고
    • From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope
    • Gould S.A.C., et al. From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope. J. Vac. Sci. Technol. 1990, 8:369-373.
    • (1990) J. Vac. Sci. Technol. , vol.8 , pp. 369-373
    • Gould, S.A.C.1
  • 17
    • 0001726145 scopus 로고
    • Force microscopy on living cells
    • Haberle W., et al. Force microscopy on living cells. J. Vac. Sci. Technol. 1991, 9:1210-1213.
    • (1991) J. Vac. Sci. Technol. , vol.9 , pp. 1210-1213
    • Haberle, W.1
  • 18
    • 0025541269 scopus 로고
    • Imaging cells with the atomic force microscope
    • Butt H.J., et al. Imaging cells with the atomic force microscope. J. Struct. Biol. 1990, 105:54-61.
    • (1990) J. Struct. Biol. , vol.105 , pp. 54-61
    • Butt, H.J.1
  • 19
    • 0035940402 scopus 로고    scopus 로고
    • A high-speed atomic force microscope for studying biological macromolecules
    • Ando T., et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:12468-12472.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 12468-12472
    • Ando, T.1
  • 20
    • 84885545966 scopus 로고    scopus 로고
    • High-speed AFM for observing dynamic processes in liquid
    • Wiley-VCH
    • Ando T., et al. High-speed AFM for observing dynamic processes in liquid. Atomic Force Microscopy in Liquid 2012, 189-209. Wiley-VCH.
    • (2012) Atomic Force Microscopy in Liquid , pp. 189-209
    • Ando, T.1
  • 21
    • 84881590734 scopus 로고    scopus 로고
    • High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events
    • Suzuki Y., et al. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci. Rep. 2013, 3:2131.
    • (2013) Sci. Rep. , vol.3 , pp. 2131
    • Suzuki, Y.1
  • 22
    • 77950860384 scopus 로고    scopus 로고
    • Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
    • Fantner G.E., et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat. Nanotechnol. 2010, 5:280-285.
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 280-285
    • Fantner, G.E.1
  • 23
    • 0028020164 scopus 로고
    • Functional group imaging by chemical force microscopy
    • Frisbie C.D., et al. Functional group imaging by chemical force microscopy. Science 1994, 265:2071-2074.
    • (1994) Science , vol.265 , pp. 2071-2074
    • Frisbie, C.D.1
  • 24
    • 77649184586 scopus 로고    scopus 로고
    • Chemical-force microscopy for materials characterization
    • Ito T., et al. Chemical-force microscopy for materials characterization. Trends Anal. Chem. 2010, 29:225-233.
    • (2010) Trends Anal. Chem. , vol.29 , pp. 225-233
    • Ito, T.1
  • 25
    • 38349001005 scopus 로고    scopus 로고
    • High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia
    • Dague E., et al. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 2008, 94:656-660.
    • (2008) Biophys. J. , vol.94 , pp. 656-660
    • Dague, E.1
  • 26
    • 0024604960 scopus 로고
    • The scanning ion-conductance microscope
    • Hansma P.K., et al. The scanning ion-conductance microscope. Science 1989, 243:641-643.
    • (1989) Science , vol.243 , pp. 641-643
    • Hansma, P.K.1
  • 27
    • 63949087301 scopus 로고    scopus 로고
    • Nanoscale live-cell imaging using hopping probe ion conductance microscopy
    • Novak P., et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 2009, 6:279-281.
    • (2009) Nat. Methods , vol.6 , pp. 279-281
    • Novak, P.1
  • 28
    • 65949083762 scopus 로고    scopus 로고
    • Force probing surfaces of living cells to molecular resolution
    • Muller D.J., et al. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 2009, 5:383-390.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 383-390
    • Muller, D.J.1
  • 29
    • 46749107184 scopus 로고    scopus 로고
    • Single-cell force spectroscopy
    • Helenius J., et al. Single-cell force spectroscopy. J. Cell Sci. 2008, 121:1785-1791.
    • (2008) J. Cell Sci. , vol.121 , pp. 1785-1791
    • Helenius, J.1
  • 30
    • 84890307248 scopus 로고    scopus 로고
    • Single-cell force spectroscopy of Als-mediated fungal adhesion
    • Alsteens D., et al. Single-cell force spectroscopy of Als-mediated fungal adhesion. Anal. Methods 2013, 5:3657-3662.
    • (2013) Anal. Methods , vol.5 , pp. 3657-3662
    • Alsteens, D.1
  • 31
    • 78650547219 scopus 로고    scopus 로고
    • Force-induced formation and propagation of adhesion nanodomains in living fungal cells
    • Alsteens D., et al. Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20744-20749.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 20744-20749
    • Alsteens, D.1
  • 32
    • 69949151377 scopus 로고    scopus 로고
    • Bioinspired single bacterial cell force spectroscopy
    • Kang S., Elimelech M. Bioinspired single bacterial cell force spectroscopy. Langmuir 2009, 25:9656-9659.
    • (2009) Langmuir , vol.25 , pp. 9656-9659
    • Kang, S.1    Elimelech, M.2
  • 33
    • 58149332708 scopus 로고    scopus 로고
    • Cooperativity in adhesion cluster formation during initial cell adhesion
    • Selhuber-Unkel C., et al. Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys. J. 2008, 95:5424-5431.
    • (2008) Biophys. J. , vol.95 , pp. 5424-5431
    • Selhuber-Unkel, C.1
  • 34
    • 34248167593 scopus 로고    scopus 로고
    • Revealing early steps of alpha(2)beta(1) integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy
    • Taubenberger A., et al. Revealing early steps of alpha(2)beta(1) integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol. Biol. Cell 2007, 18:1634-1644.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1634-1644
    • Taubenberger, A.1
  • 35
    • 84877281733 scopus 로고    scopus 로고
    • Single-cell force spectroscopy of probiotic bacteria
    • Beaussart A., et al. Single-cell force spectroscopy of probiotic bacteria. Biophys. J. 2013, 104:1886-1892.
    • (2013) Biophys. J. , vol.104 , pp. 1886-1892
    • Beaussart, A.1
  • 36
    • 84887604665 scopus 로고    scopus 로고
    • Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions
    • Thwala J.M., et al. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions. Langmuir 2013, 29:13773-13782.
    • (2013) Langmuir , vol.29 , pp. 13773-13782
    • Thwala, J.M.1
  • 37
    • 0033772174 scopus 로고    scopus 로고
    • Discrete interactions in cell adhesion measured by single-molecule force spectroscopy
    • Benoit M., et al. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2000, 2:313-317.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 313-317
    • Benoit, M.1
  • 38
    • 84877816472 scopus 로고    scopus 로고
    • A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates
    • Canale C., et al. A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates. Biosens. Bioelectron. 2013, 48:172-179.
    • (2013) Biosens. Bioelectron. , vol.48 , pp. 172-179
    • Canale, C.1
  • 39
    • 31644449928 scopus 로고    scopus 로고
    • Single-molecule analysis of cadherin-mediated cell-cell adhesion
    • Panorchan P., et al. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J. Cell Sci. 2006, 119:66-74.
    • (2006) J. Cell Sci. , vol.119 , pp. 66-74
    • Panorchan, P.1
  • 40
    • 57449120656 scopus 로고    scopus 로고
    • Live-cell single-molecule force spectroscopy
    • Dobrowsky T.M., et al. Live-cell single-molecule force spectroscopy. Methods Cell Biol. 2008, 89:411-432.
    • (2008) Methods Cell Biol. , vol.89 , pp. 411-432
    • Dobrowsky, T.M.1
  • 41
    • 77950645792 scopus 로고    scopus 로고
    • Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk
    • Friedrichs J., et al. Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics 2010, 10:1455-1462.
    • (2010) Proteomics , vol.10 , pp. 1455-1462
    • Friedrichs, J.1
  • 42
    • 84899018518 scopus 로고    scopus 로고
    • In situ quantification of living cell adhesion forces: single cell force spectroscopy with a nanotweezer
    • Xie H., et al. In situ quantification of living cell adhesion forces: single cell force spectroscopy with a nanotweezer. Langmuir 2014, 30:2952-2959.
    • (2014) Langmuir , vol.30 , pp. 2952-2959
    • Xie, H.1
  • 43
    • 41149154011 scopus 로고    scopus 로고
    • Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond
    • Lin D.C., Horkay F. Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 2008, 4:669-682.
    • (2008) Soft Matter , vol.4 , pp. 669-682
    • Lin, D.C.1    Horkay, F.2
  • 44
    • 0028276694 scopus 로고
    • Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy
    • Hoh J.H., Schoenenberger C.A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 1994, 107:1105-1114.
    • (1994) J. Cell Sci. , vol.107 , pp. 1105-1114
    • Hoh, J.H.1    Schoenenberger, C.A.2
  • 45
    • 84877733646 scopus 로고    scopus 로고
    • Force nanoscopy of cell mechanics and cell adhesion
    • Dufrene Y.F., Pelling A.E. Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 2013, 5:4094-4104.
    • (2013) Nanoscale , vol.5 , pp. 4094-4104
    • Dufrene, Y.F.1    Pelling, A.E.2
  • 46
    • 84874887789 scopus 로고    scopus 로고
    • Mechanical properties of biological specimens explored by atomic force microscopy
    • Kasas S., et al. Mechanical properties of biological specimens explored by atomic force microscopy. J. Phys. D: Appl. Phys. 2013, 46:133001.
    • (2013) J. Phys. D: Appl. Phys. , vol.46 , pp. 133001
    • Kasas, S.1
  • 47
    • 0030053843 scopus 로고    scopus 로고
    • Measuring the viscoelastic properties of human platelets with the atomic force microscope
    • Radmacher M., et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 1996, 70:556-567.
    • (1996) Biophys. J. , vol.70 , pp. 556-567
    • Radmacher, M.1
  • 48
    • 84860338153 scopus 로고    scopus 로고
    • Force volume and stiffness tomography investigation on the dynamics of stiff material under bacterial membranes
    • Longo G., et al. Force volume and stiffness tomography investigation on the dynamics of stiff material under bacterial membranes. J. Mol. Recognit. 2012, 25:278-284.
    • (2012) J. Mol. Recognit. , vol.25 , pp. 278-284
    • Longo, G.1
  • 49
    • 84875578401 scopus 로고    scopus 로고
    • Antibiotic-induced modifications of the stiffness of bacterial membranes
    • Longo G., et al. Antibiotic-induced modifications of the stiffness of bacterial membranes. J. Microbiol. Methods 2013, 93:80-84.
    • (2013) J. Microbiol. Methods , vol.93 , pp. 80-84
    • Longo, G.1
  • 50
    • 36849037967 scopus 로고    scopus 로고
    • Nanomechanical analysis of cells from cancer patients
    • Cross S.E., et al. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2:780-783.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 780-783
    • Cross, S.E.1
  • 51
    • 84869067593 scopus 로고    scopus 로고
    • The nanomechanical signature of breast cancer
    • Plodinec M., et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 2012, 7:757-765.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 757-765
    • Plodinec, M.1
  • 52
    • 78651388574 scopus 로고    scopus 로고
    • Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding
    • Stewart M.P., et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 2011, 469:226-230.
    • (2011) Nature , vol.469 , pp. 226-230
    • Stewart, M.P.1
  • 53
    • 83555162569 scopus 로고    scopus 로고
    • Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy
    • Raman A., et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotechnol. 2011, 6:809-814.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 809-814
    • Raman, A.1
  • 54
    • 0242586429 scopus 로고    scopus 로고
    • MRNA analysis of single living cells
    • Osada T., et al. mRNA analysis of single living cells. J. Nanobiotechnology 2003, 1:2.
    • (2003) J. Nanobiotechnology , vol.1 , pp. 2
    • Osada, T.1
  • 55
    • 69549128153 scopus 로고    scopus 로고
    • Selective probing of mRNA expression levels within a living cell
    • Nawarathna D., et al. Selective probing of mRNA expression levels within a living cell. Appl. Phys. Lett. 2009, 95:083117.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 083117
    • Nawarathna, D.1
  • 56
    • 78149413636 scopus 로고    scopus 로고
    • Targeted messenger RNA profiling of transfected breast cancer gene in a living cell
    • Nawarathna D., et al. Targeted messenger RNA profiling of transfected breast cancer gene in a living cell. Anal. Biochem. 2011, 408:342-344.
    • (2011) Anal. Biochem. , vol.408 , pp. 342-344
    • Nawarathna, D.1
  • 57
    • 33847252436 scopus 로고    scopus 로고
    • Single cell transfection using plasmid decorated AFM probes
    • Cuerrier C.M., et al. Single cell transfection using plasmid decorated AFM probes. Biochem. Biophys. Res. Commun. 2007, 355:632-636.
    • (2007) Biochem. Biophys. Res. Commun. , vol.355 , pp. 632-636
    • Cuerrier, C.M.1
  • 58
    • 77953655173 scopus 로고    scopus 로고
    • Nanoneedle: a multifunctional tool for biological studies in living cells
    • Yum K., et al. Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2010, 2:363-372.
    • (2010) Nanoscale , vol.2 , pp. 363-372
    • Yum, K.1
  • 59
    • 19744379027 scopus 로고    scopus 로고
    • Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness
    • Han S.W., et al. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem. Biophys. Res. Commun. 2005, 332:633-639.
    • (2005) Biochem. Biophys. Res. Commun. , vol.332 , pp. 633-639
    • Han, S.W.1
  • 60
    • 49649127358 scopus 로고    scopus 로고
    • High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy
    • Han S.W., et al. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine 2008, 4:215-225.
    • (2008) Nanomedicine , vol.4 , pp. 215-225
    • Han, S.W.1
  • 61
    • 34347204144 scopus 로고    scopus 로고
    • A cell nanoinjector based on carbon nanotubes
    • Chen X., et al. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:8218-8222.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 8218-8222
    • Chen, X.1
  • 62
    • 65249143305 scopus 로고    scopus 로고
    • Bacteria survive multiple puncturings of their cell walls
    • Suo Z., et al. Bacteria survive multiple puncturings of their cell walls. Langmuir 2009, 25:4588-4594.
    • (2009) Langmuir , vol.25 , pp. 4588-4594
    • Suo, Z.1
  • 63
    • 84890353248 scopus 로고    scopus 로고
    • Isolation of single mammalian cells from adherent cultures by fluidic force microscopy
    • Guillaume-Gentil O., et al. Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab Chip 2014, 14:402-414.
    • (2014) Lab Chip , vol.14 , pp. 402-414
    • Guillaume-Gentil, O.1
  • 64
    • 84864698156 scopus 로고    scopus 로고
    • Cooperative Vaccinia infection demonstrated at the single-cell level using FluidFM
    • Stiefel P., et al. Cooperative Vaccinia infection demonstrated at the single-cell level using FluidFM. Nano Lett. 2012, 12:4219-4227.
    • (2012) Nano Lett. , vol.12 , pp. 4219-4227
    • Stiefel, P.1
  • 65
    • 77955142644 scopus 로고    scopus 로고
    • Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology
    • Dörig P., et al. Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology. Appl. Phys. Lett. 2010, 97:023701.
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 023701
    • Dörig, P.1
  • 66
    • 84880991420 scopus 로고    scopus 로고
    • Isolation of optically targeted single bacteria using FluidFM applied to aerobic anoxygenic phototrophs from the phyllosphere
    • Stiefel P., et al. Isolation of optically targeted single bacteria using FluidFM applied to aerobic anoxygenic phototrophs from the phyllosphere. Appl. Environ. Microbiol. 2013, 79:4895-4905.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 4895-4905
    • Stiefel, P.1
  • 67
    • 84880387508 scopus 로고    scopus 로고
    • Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions
    • Dörig P., et al. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys. J. 2013, 105:463-472.
    • (2013) Biophys. J. , vol.105 , pp. 463-472
    • Dörig, P.1
  • 68
    • 12044257837 scopus 로고
    • Direct measurement of colloidal forces using an atomic force microscope
    • Ducker W.A., et al. Direct measurement of colloidal forces using an atomic force microscope. Nature 1991, 353:239-241.
    • (1991) Nature , vol.353 , pp. 239-241
    • Ducker, W.A.1
  • 69
    • 0026317248 scopus 로고
    • Measuring electrostatic, Vanderwaals, and hydration forces in electrolyte-solutions with an atomic force microscope
    • Butt H.J. Measuring electrostatic, Vanderwaals, and hydration forces in electrolyte-solutions with an atomic force microscope. Biophys. J. 1991, 60:1438-1444.
    • (1991) Biophys. J. , vol.60 , pp. 1438-1444
    • Butt, H.J.1
  • 70
    • 84871465105 scopus 로고    scopus 로고
    • Rapid and serial quantification of adhesion forces of yeast and mammalian cells
    • Potthoff E., et al. Rapid and serial quantification of adhesion forces of yeast and mammalian cells. PLoS ONE 2012, 7:e52712.
    • (2012) PLoS ONE , vol.7
    • Potthoff, E.1
  • 71
    • 84894216410 scopus 로고    scopus 로고
    • Toward a rational design of surface textures promoting endothelialization
    • Potthoff E., et al. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 2014, 14:1069-1079.
    • (2014) Nano Lett. , vol.14 , pp. 1069-1079
    • Potthoff, E.1
  • 72
    • 84878614973 scopus 로고    scopus 로고
    • Force-controlled fluidic injection into single cell nuclei
    • Guillaume-Gentil O., et al. Force-controlled fluidic injection into single cell nuclei. Small 2013, 9:1904-1907.
    • (2013) Small , vol.9 , pp. 1904-1907
    • Guillaume-Gentil, O.1
  • 73
    • 20444461212 scopus 로고    scopus 로고
    • Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling
    • Meister A., et al. Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling. Appl. Phys. Lett. 2004, 85:6260-6262.
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 6260-6262
    • Meister, A.1
  • 74
    • 11044233967 scopus 로고    scopus 로고
    • Micromachined fountain pen for atomic force microscope-based nanopatterning
    • Deladi S., et al. Micromachined fountain pen for atomic force microscope-based nanopatterning. Appl. Phys. Lett. 2004, 85:5361-5363.
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 5361-5363
    • Deladi, S.1
  • 75
    • 27644567003 scopus 로고    scopus 로고
    • A nanofountain probe with sub-100-nm molecular writing resolution
    • Kim K.H., et al. A nanofountain probe with sub-100-nm molecular writing resolution. Small 2005, 1:632-635.
    • (2005) Small , vol.1 , pp. 632-635
    • Kim, K.H.1
  • 77
    • 52649180489 scopus 로고    scopus 로고
    • Hollow atomic force microscopy probes for nanoscale dispensing of liquids
    • Meister A., et al. Hollow atomic force microscopy probes for nanoscale dispensing of liquids. NSTI-Nanotech 2008 2008, 3:273-276.
    • (2008) NSTI-Nanotech 2008 , vol.3 , pp. 273-276
    • Meister, A.1
  • 78
    • 76949106929 scopus 로고    scopus 로고
    • Micromachining of a newly designed AFM probe integrated with hollow microneedle for cellular function analysis
    • Kato N., et al. Micromachining of a newly designed AFM probe integrated with hollow microneedle for cellular function analysis. Microelectron. Eng. 2010, 87:1185-1189.
    • (2010) Microelectron. Eng. , vol.87 , pp. 1185-1189
    • Kato, N.1
  • 79
    • 68249160933 scopus 로고    scopus 로고
    • Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds
    • Loh O., et al. Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. Small 2009, 5:1667-1674.
    • (2009) Small , vol.5 , pp. 1667-1674
    • Loh, O.1
  • 80
    • 84885185134 scopus 로고    scopus 로고
    • Fabrication and characterization of bioprobe integrated with a hollow nanoneedle for novel AFM applications in cellular function analysis
    • Shibata T., et al. Fabrication and characterization of bioprobe integrated with a hollow nanoneedle for novel AFM applications in cellular function analysis. Microelectron. Eng. 2013, 111:325-331.
    • (2013) Microelectron. Eng. , vol.111 , pp. 325-331
    • Shibata, T.1
  • 81
    • 84879098594 scopus 로고    scopus 로고
    • Nanofountain probe electroporation (NFP-E) of single cells
    • Kang W., et al. Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett. 2013, 13:2448-2457.
    • (2013) Nano Lett. , vol.13 , pp. 2448-2457
    • Kang, W.1
  • 82
    • 0029818020 scopus 로고    scopus 로고
    • Imaging the internal and external pore structure of membranes in fluid: TappingMode scanning ion conductance microscopy
    • Proksch R., et al. Imaging the internal and external pore structure of membranes in fluid: TappingMode scanning ion conductance microscopy. Biophys. J. 1996, 71:2155-2157.
    • (1996) Biophys. J. , vol.71 , pp. 2155-2157
    • Proksch, R.1
  • 83
    • 0001004416 scopus 로고    scopus 로고
    • Fountain pen nanochemistry: atomic force control of chrome etching
    • Lewis A., et al. Fountain pen nanochemistry: atomic force control of chrome etching. Appl. Phys. Lett. 1999, 75:2689-2691.
    • (1999) Appl. Phys. Lett. , vol.75 , pp. 2689-2691
    • Lewis, A.1
  • 84
    • 0037205893 scopus 로고    scopus 로고
    • Writing with DNA and protein using a nanopipet for controlled delivery
    • Bruckbauer A., et al. Writing with DNA and protein using a nanopipet for controlled delivery. J. Am. Chem. Soc. 2002, 124:8810-8811.
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 8810-8811
    • Bruckbauer, A.1
  • 85
    • 84868350693 scopus 로고    scopus 로고
    • Voltage controlled nano-injection system for single-cell surgery
    • Seger R.A., et al. Voltage controlled nano-injection system for single-cell surgery. Nanoscale 2012, 4:5843-5846.
    • (2012) Nanoscale , vol.4 , pp. 5843-5846
    • Seger, R.A.1
  • 86
    • 84893474538 scopus 로고    scopus 로고
    • Compartmental genomics in living cells revealed by single-cell nanobiopsy
    • Actis P., et al. Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 2013, 8:546-553.
    • (2013) ACS Nano , vol.8 , pp. 546-553
    • Actis, P.1
  • 87
    • 78650619069 scopus 로고    scopus 로고
    • Multifunctional carbon-nanotube cellular endoscopes
    • Singhal R., et al. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 2011, 6:57-64.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 57-64
    • Singhal, R.1
  • 88
    • 84870195206 scopus 로고    scopus 로고
    • Hydrodynamic flow confinement technology in microfluidic perfusion devices
    • Ainla A., et al. Hydrodynamic flow confinement technology in microfluidic perfusion devices. Micromachines 2012, 3:442-461.
    • (2012) Micromachines , vol.3 , pp. 442-461
    • Ainla, A.1
  • 89
    • 84896741640 scopus 로고    scopus 로고
    • Microfluidic probe for single-cell analysis in adherent tissue culture
    • Sarkar A., et al. Microfluidic probe for single-cell analysis in adherent tissue culture. Nat. Commun. 2014, 5:3421.
    • (2014) Nat. Commun. , vol.5 , pp. 3421
    • Sarkar, A.1
  • 90
    • 79955401338 scopus 로고    scopus 로고
    • A vertical microfluidic probe
    • Kaigala G.V., et al. A vertical microfluidic probe. Langmuir 2011, 27:5686-5693.
    • (2011) Langmuir , vol.27 , pp. 5686-5693
    • Kaigala, G.V.1
  • 91
    • 84857338154 scopus 로고    scopus 로고
    • Micro-immunohistochemistry using a microfluidic probe
    • Lovchik R.D., et al. Micro-immunohistochemistry using a microfluidic probe. Lab Chip 2012, 12:1040-1043.
    • (2012) Lab Chip , vol.12 , pp. 1040-1043
    • Lovchik, R.D.1
  • 92
    • 84903587482 scopus 로고    scopus 로고
    • 3D nanofabrication of fluidic components by corner lithography
    • Berenschot E.J.W., et al. 3D nanofabrication of fluidic components by corner lithography. Small 2012, 8:3702.
    • (2012) Small , vol.8 , pp. 3702
    • Berenschot, E.J.W.1
  • 93
    • 84899867411 scopus 로고    scopus 로고
    • Hollow AFM cantilever pipette
    • Ghatkesar M.K., et al. Hollow AFM cantilever pipette. Microelectron. Eng. 2014, 124:22-25.
    • (2014) Microelectron. Eng. , vol.124 , pp. 22-25
    • Ghatkesar, M.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.