메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1675-1711

Adaptive minimax regression estimation over sparse lq-hulls

Author keywords

High dimensional sparse learning; Minimax rate of convergence; Model selection; Optimal aggregation

Indexed keywords

REGRESSION ANALYSIS;

EID: 84902815139     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (55)
  • 2
    • 68649088331 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • J.-Y. Audibert. Fast learning rates in statistical inference through aggregation. Annals of Statistics, 37:1591-1646, 2009.
    • (2009) Annals of Statistics , vol.37 , pp. 1591-1646
    • Audibert, J.-Y.1
  • 4
    • 0034398141 scopus 로고    scopus 로고
    • Model selection for regression on a fixed design
    • Y. Baraud. Model selection for regression on a fixed design. Probability Theory Related Fields, 117:467-493, 2000.
    • (2000) Probability Theory Related Fields , vol.117 , pp. 467-493
    • Baraud, Y.1
  • 5
    • 0036997840 scopus 로고    scopus 로고
    • Model selection for regression on a random design
    • Y. Baraud. Model selection for regression on a random design. ESAIM Probab. Statist., 6: 127-146, 2002.
    • (2002) ESAIM Probab. Statist. , vol.6 , pp. 127-146
    • Baraud, Y.1
  • 8
    • 84902763137 scopus 로고
    • On estimating a density using hellinger distance and some other strange facts
    • L. Birgé. On estimating a density using Hellinger distance and some other strange facts. Probab. Theory Related Fields, 97:113-150, 1986.
    • (1986) Probab. Theory Related Fields , vol.97 , pp. 113-150
    • Birgé, L.1
  • 9
    • 33645283113 scopus 로고    scopus 로고
    • Model selection for Gaussian regression with random design
    • DOI 10.3150/bj/1106314849
    • L. Birgé. Model selection for Gaussian regression with random design. Bernoulli, 10:1039-1051, 2004. (Pubitemid 44242747)
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 1039-1051
    • Birge, L.1
  • 10
    • 33645301284 scopus 로고    scopus 로고
    • Model selection via testing: An alternative to (penalized) maximum likelihood estimators
    • DOI 10.1016/j.anihpb.2005.04.004, PII S0246020305000841
    • L. Birgé. Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. I. H. Poincaré, 42:273-325, 2006. (Pubitemid 43467656)
    • (2006) Annales de l'institut Henri Poincare (B) Probability and Statistics , vol.42 , Issue.3 , pp. 273-325
    • Birge, L.1
  • 13
    • 41949142938 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • DOI 10.1109/TIT.2008.917657
    • F. Bunea and A. Nobel. Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Transactions on Information Theory, 54:1725-1735, 2008. (Pubitemid 351512998)
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.4 , pp. 1725-1735
    • Bunea, F.1    Nobel, A.2
  • 16
    • 0141577431 scopus 로고    scopus 로고
    • Preprint 510, Laboratoire de Probabilitès et Modèles Aléatoires, Univ. Paris 6 and Paris 7, France
    • O. Catoni. Universal aggregation rules with exact bias bounds. Preprint 510, Laboratoire de Probabilitès et Modèles Aléatoires, Univ. Paris 6 and Paris 7, France. Available at http://www.proba.jussieu.fr/ mathdoc/preprints/index.html#1999, 1999.
    • (1999) Universal Aggregation Rules with Exact Bias Bounds
    • Catoni, O.1
  • 18
    • 84879223772 scopus 로고    scopus 로고
    • Challenging the empirical mean and empirical variance: A deviation study
    • O. Catoni. Challenging the empirical mean and empirical variance: A deviation study. Ann. I. H. Poincaré, 48:909-1244, 2012.
    • (2012) Ann. I. H. Poincaré , vol.48 , pp. 909-1244
    • Catoni, O.1
  • 20
    • 84884954887 scopus 로고    scopus 로고
    • Sharp oracle inequalities for aggregation of affine estimators
    • A. S. Dalalyan and J. Salmon. Sharp oracle inequalities for aggregation of affine estimators. Annals of Statistics, 40:2327-2355, 2012.
    • (2012) Annals of Statistics , vol.40 , pp. 2327-2355
    • Dalalyan, A.S.1    Salmon, J.2
  • 21
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • A. S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting and sharp oracle inequalities. Lecture Notes in Computer Science, 4539:97-111, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4539 , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 22
    • 84861604276 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and langevin Monte Carlo
    • A. S. Dalalyan and A.B. Tsybakov. Sparse regression learning by aggregation and Langevin Monte Carlo. Journal of Computer and System Science, 78:1423-1443, 2012a.
    • (2012) Journal of Computer and System Science , vol.78 , pp. 1423-1443
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 23
    • 84871602377 scopus 로고    scopus 로고
    • Mirror averaging with sparsity priors
    • A. S. Dalalyan and A.B. Tsybakov. Mirror averaging with sparsity priors. Bernoulli, 18: 914-944, 2012b.
    • (2012) Bernoulli , vol.18 , pp. 914-944
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 26
    • 0003809263 scopus 로고    scopus 로고
    • Function spaces, entropy numbers, and differential operators
    • D. E. Edmunds and H. Triebel. Function spaces, entropy numbers, and differential operators. Cambridge Tracts in Mathematics, 120, 1998.
    • (1998) Cambridge Tracts in Mathematics , vol.120
    • Edmunds, D.E.1    Triebel, H.2
  • 27
    • 58149358999 scopus 로고    scopus 로고
    • Mixing least-squares estimators when the variance is unknown
    • C. Giraud. Mixing least-squares estimators when the variance is unknown. Bernoulli, 14: 1089-1107, 2008.
    • (2008) Bernoulli , vol.14 , pp. 1089-1107
    • Giraud, C.1
  • 28
    • 65349157787 scopus 로고    scopus 로고
    • A universal procedure for aggregating estimators
    • A. Goldenshluger. A universal procedure for aggregating estimators. Annals of Statistics, 37:542-568, 2009.
    • (2009) Annals of Statistics , vol.37 , pp. 542-568
    • Goldenshluger, A.1
  • 29
    • 34248596750 scopus 로고    scopus 로고
    • Sequential prediction of unbounded stationary time series
    • DOI 10.1109/TIT.2007.894660
    • L. Györfi and Gy. Ottucsák. Sequential prediction of unbounded stationary time series. IEEE Transactions on Information Theory, 53:1866-1872, 2007. (Pubitemid 46744816)
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.5 , pp. 1866-1872
    • Gyorfi, L.1    Ottucsak, G.2
  • 31
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric estimation
    • A. Juditsky and A. Nemirovski. Functional aggregation for nonparametric estimation. Annals of Statistics, 28:681-719, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 681-719
    • Juditsky, A.1    Nemirovski, A.2
  • 33
    • 0000677724 scopus 로고    scopus 로고
    • A Lower Estimate for Entropy Numbers
    • DOI 10.1006/jath.2000.3554, PII S0021904500935548
    • T. Kühn. A lower estimate for entropy numbers. Journal of Approximation Theory, 110: 120-124, 2001. (Pubitemid 33619665)
    • (2001) Journal of Approximation Theory , vol.110 , Issue.1 , pp. 120-124
    • Kuhn, T.1
  • 34
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • DOI 10.1109/TIT.2006.878172
    • G. Leung and A.R. Barron. Information theory and mixing least-squares regressions. IEEE Transactions on Information Theory, 52:3396-3410, 2006. (Pubitemid 44145107)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.8 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 35
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and d-convex aggregation
    • K. Lounici. Generalized mirror averaging and d-convex aggregation. Mathematical methods of statistic, 16:246-259, 2007.
    • (2007) Mathematical Methods of Statistic , vol.16 , pp. 246-259
    • Lounici, K.1
  • 37
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
    • S. Negahban, P. Ravikumar, M.J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science, 27:538-557, 2012.
    • (2012) Statistical Science , vol.27 , pp. 538-557
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 38
    • 0007258907 scopus 로고    scopus 로고
    • Lecture Notes in Mathematics, Springer, New York, ecole d'eté de probabilités de saint-flour 1998 edition
    • A. Nemirovski. Topics in non-parametric statistics. Lecture Notes in Mathematics, Springer, New York, ecole d'eté de probabilités de saint-flour 1998 edition, 2000.
    • (2000) Topics in Non-parametric Statistics
    • Nemirovski, A.1
  • 40
  • 41
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over-balls
    • G. Raskutti, M. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear regression over-balls. IEEE Transactions on Information Theory, 57:6976-699, 2012.
    • (2012) IEEE Transactions on Information Theory , vol.57 , pp. 6976-6699
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 42
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • P. Rigollet and A.B. Tsybakov. Exponential screening and optimal rates of sparse estimation. Annals of Statistics, 39:731-771, 2010.
    • (2010) Annals of Statistics , vol.39 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.B.2
  • 43
    • 84902770971 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • A.B. Tsybakov. Optimal rates of aggregation. Annals of Statistics, 39:731-771, 2003.
    • (2003) Annals of Statistics , vol.39 , pp. 731-771
    • Tsybakov, A.B.1
  • 44
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • S.A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the lasso. Electron. J. Statist, 3:1360-1392, 2009.
    • (2009) Electron. J. Statist , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 46
    • 21144432799 scopus 로고    scopus 로고
    • Model selection in nonparametric regression
    • M. Wegkamp. Model selection in nonparametric regression. Annals of Statistics, 31:252-273, 2003.
    • (2003) Annals of Statistics , vol.31 , pp. 252-273
    • Wegkamp, M.1
  • 47
    • 0004628082 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Statistics, Yale University
    • Y. Yang. Minimax optimal density estimation. Ph.D. Dissertation, Department of Statistics, Yale University, 1996.
    • (1996) Minimax Optimal Density Estimation
    • Yang, Y.1
  • 48
    • 0346208510 scopus 로고    scopus 로고
    • Model selection for nonparametric regression
    • Y. Yang. Model selection for nonparametric regression. Statistica Sinica, 9:475-499, 1999.
    • (1999) Statistica Sinica , vol.9 , pp. 475-499
    • Yang, Y.1
  • 49
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • Y. Yang. Combining different procedures for adaptive regression. Journal of Multivariate Analysis, 74:135-161, 2000a.
    • (2000) Journal of Multivariate Analysis , vol.74 , pp. 135-161
    • Yang, Y.1
  • 50
    • 0034410225 scopus 로고    scopus 로고
    • Mixing strategies for density estimation
    • Y. Yang. Mixing strategies for density estimation. Annals of Statistics, 28:75-87, 2000b.
    • (2000) Annals of Statistics , vol.28 , pp. 75-87
    • Yang, Y.1
  • 52
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • DOI 10.3150/bj/1077544602
    • Y. Yang. Aggregating regression procedures to improve performance. Bernoulli, 10:25-47, 2004. An older version of the paper is Preprint #1999-17 of Department of Statistics at Iowa State University. (Pubitemid 44242782)
    • (2004) Bernoulli , vol.10 , Issue.1 , pp. 25-47
    • Yang, Y.1
  • 53
    • 0031672252 scopus 로고    scopus 로고
    • An asymptotic property of model selection criteria
    • PII S0018944898000790
    • Y. Yang and A.R. Barron. An asymptotic property of model selection criteria. IEEE Trans. Inform. Theory, 44:95-116, 1998. (Pubitemid 128737882)
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.1 , pp. 95-116
    • Yang, Y.1    Barron, A.R.2
  • 54
    • 0033233737 scopus 로고    scopus 로고
    • Information theoretic determination of minimax rates of convergence
    • Y. Yang and A.R. Barron. Information theoretic determination of minimax rates of convergence. Annals of Statistics, 27:1564-1599, 1999.
    • (1999) Annals of Statistics , vol.27 , pp. 1564-1599
    • Yang, Y.1    Barron, A.R.2
  • 55
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38:894-942, 2010.
    • (2010) Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.