메뉴 건너뛰기




Volumn 53, Issue 5, 2007, Pages 1866-1872

Sequential prediction of unbounded stationary time series

Author keywords

On line learning; Pattern recognition; Sequential prediction; Time series; Universal consistency

Indexed keywords

BAYESIAN NETWORKS; CONVERGENCE OF NUMERICAL METHODS; LEARNING SYSTEMS; PATTERN RECOGNITION; PROBABILITY; RANDOM PROCESSES; TIME SERIES ANALYSIS;

EID: 34248596750     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2007.894660     Document Type: Article
Times cited : (43)

References (25)
  • 1
    • 0000551326 scopus 로고
    • Universal schemes for prediction, gambling, and portfolio selection
    • P. Algoet, "Universal schemes for prediction, gambling, and portfolio selection," Ann. Probab., vol. 20, pp. 901-941, 1992.
    • (1992) Ann. Probab , vol.20 , pp. 901-941
    • Algoet, P.1
  • 2
    • 0028428283 scopus 로고
    • The strong law of large numbers for sequential decisions under uncertainity
    • May
    • P. Algoet, "The strong law of large numbers for sequential decisions under uncertainity," IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 609-634, May 1994.
    • (1994) IEEE Trans. Inf. Theory , vol.40 , Issue.3 , pp. 609-634
    • Algoet, P.1
  • 3
    • 85128145897 scopus 로고    scopus 로고
    • P. Auer, N. Cesa-Bianchi, and C. Gentile, Adaptive and self-confident on-line learning algorithms, J. Comp. Syst. Sci., 64, no. 1, pp. 48-75, 2002, a preliminary version has appeared in Proc. 13th Annu. Conf. Computational Learning Theory.
    • P. Auer, N. Cesa-Bianchi, and C. Gentile, "Adaptive and self-confident on-line learning algorithms," J. Comp. Syst. Sci., vol. 64, no. 1, pp. 48-75, 2002, a preliminary version has appeared in Proc. 13th Annu. Conf. Computational Learning Theory.
  • 4
    • 0003713612 scopus 로고
    • Sequential Schemes for Classifying and Predicting Ergodic Processes,
    • Ph.D. dissertation, Stanford Univ, Stanford
    • D. H. Bailey, "Sequential Schemes for Classifying and Predicting Ergodic Processes," Ph.D. dissertation, Stanford Univ., Stanford, CA, 1976.
    • (1976)
    • Bailey, D.H.1
  • 5
    • 34248531887 scopus 로고    scopus 로고
    • L. Breiman, The individual ergodic theorem of information theory, Ann. Math. Statist., 28, pp. 809-811, 1957, correction in Ann Math. Statist., 31, pp. 809-810, 1960.
    • L. Breiman, "The individual ergodic theorem of information theory," Ann. Math. Statist., vol. 28, pp. 809-811, 1957, correction in Ann Math. Statist., vol. 31, pp. 809-810, 1960.
  • 7
    • 0000315398 scopus 로고
    • Local convergence of martingales and the law of large numbers
    • Y. S. Chow, "Local convergence of martingales and the law of large numbers," Ann. Math. Statist., vol. 36, pp. 552-558, 1965.
    • (1965) Ann. Math. Statist , vol.36 , pp. 552-558
    • Chow, Y.S.1
  • 9
    • 84882281845 scopus 로고
    • Universal prediction of individual sequences
    • Jul
    • M. Feder, N. Merhav, and M. Gutman, "Universal prediction of individual sequences," IEEE Trans. Inf. Theory, vol. 38, no. 4, pp. 1258-1270, Jul. 1992.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , Issue.4 , pp. 1258-1270
    • Feder, M.1    Merhav, N.2    Gutman, M.3
  • 11
    • 0013175742 scopus 로고    scopus 로고
    • Strategies for sequential prediction of stationary time series
    • M. Dror, P. L'Ecuyer, and F. Szidarovszky, Eds. Norwell, MA: Kluwer Academic
    • L. Györfi and G. Lugosi, "Strategies for sequential prediction of stationary time series," in Modeling Uncertainty: An Examination of Its Theory, Methods and Applications, M. Dror, P. L'Ecuyer, and F. Szidarovszky, Eds. Norwell, MA: Kluwer Academic, 2001, pp. 225-248.
    • (2001) Modeling Uncertainty: An Examination of Its Theory, Methods and Applications , pp. 225-248
    • Györfi, L.1    Lugosi, G.2
  • 12
    • 0033321311 scopus 로고    scopus 로고
    • A simple randomized algorithm for consistent sequential prediction of ergodic time series
    • Nov
    • L. Györfi, G. Lugosi, and G. Morvai, "A simple randomized algorithm for consistent sequential prediction of ergodic time series," IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2642-2650, Nov. 1999.
    • (1999) IEEE Trans. Inf. Theory , vol.45 , Issue.7 , pp. 2642-2650
    • Györfi, L.1    Lugosi, G.2    Morvai, G.3
  • 13
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • N. Littlestone and M. K.Warmuth, "The weighted majority algorithm," Inf. Comput., vol. 108, pp. 212-261, 1994.
    • (1994) Inf. Comput , vol.108 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 14
    • 0032184197 scopus 로고    scopus 로고
    • Universal prediction
    • Oct
    • N. Merhav and M. Feder, "Universal prediction," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2124-2147, Oct. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.6 , pp. 2124-2147
    • Merhav, N.1    Feder, M.2
  • 15
    • 0031647695 scopus 로고    scopus 로고
    • Memory-universal prediction of stationary random preocesses
    • Jan
    • D. Modha and E. Masry, "Memory-universal prediction of stationary random preocesses," IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 117-133, Jan. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.1 , pp. 117-133
    • Modha, D.1    Masry, E.2
  • 16
    • 0031103068 scopus 로고    scopus 로고
    • Weakly convergent stationary time series
    • Mar
    • G. Morvai, S. Yakowitz, and P. Algoet, "Weakly convergent stationary time series," IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 483-498, Mar. 1997.
    • (1997) IEEE Trans. Inf. Theory , vol.43 , Issue.2 , pp. 483-498
    • Morvai, G.1    Yakowitz, S.2    Algoet, P.3
  • 17
    • 0030551977 scopus 로고    scopus 로고
    • Nonparametric inference for ergodic, stationary time series
    • G. Morvai, S. Yakowitz, and L. Györfi, "Nonparametric inference for ergodic, stationary time series," Ann. Statist., vol. 24, pp. 370-379, 1996.
    • (1996) Ann. Statist , vol.24 , pp. 370-379
    • Morvai, G.1    Yakowitz, S.2    Györfi, L.3
  • 18
    • 0037268871 scopus 로고    scopus 로고
    • On optimal sequential prediction for general processes
    • Jan
    • A. Nobel, "On optimal sequential prediction for general processes," IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 83-98, Jan. 2003.
    • (2003) IEEE Trans. Inf. Theory , vol.49 , Issue.1 , pp. 83-98
    • Nobel, A.1
  • 19
    • 51249183423 scopus 로고
    • Guessing the next output of a stationary process
    • D. Ornstein, "Guessing the next output of a stationary process," Israel J. Math., vol. 30, pp. 292-296, 1978.
    • (1978) Israel J. Math , vol.30 , pp. 292-296
    • Ornstein, D.1
  • 20
    • 0033348048 scopus 로고    scopus 로고
    • Universal linear prediction by model order weighting
    • Oct
    • A. C. Singer and M. Feder, "Universal linear prediction by model order weighting," IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2685-2699, Oct. 1999.
    • (1999) IEEE Trans. Signal Process , vol.47 , Issue.10 , pp. 2685-2699
    • Singer, A.C.1    Feder, M.2
  • 23
    • 0032047115 scopus 로고    scopus 로고
    • A game of prediction with expert advice
    • V. Vovk, "A game of prediction with expert advice," J. Comp. Syst. Sci., vol. 56, pp. 153-173, 1998.
    • (1998) J. Comp. Syst. Sci , vol.56 , pp. 153-173
    • Vovk, V.1
  • 24
    • 12444347037 scopus 로고    scopus 로고
    • Universal prediction of random binary sequences in a noisy environment
    • Feb
    • T. Weissman and N. Merhav, "Universal prediction of random binary sequences in a noisy environment," Ann. Appl. Probab., vol. 14, no. 1, pp. 54-89, Feb. 2004.
    • (2004) Ann. Appl. Probab , vol.14 , Issue.1 , pp. 54-89
    • Weissman, T.1    Merhav, N.2
  • 25
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • Y. Yang, "Combining different procedures for adaptive regression," J. Multivariate Anal., vol. 74, pp. 135-161, 2000.
    • (2000) J. Multivariate Anal , vol.74 , pp. 135-161
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.