메뉴 건너뛰기




Volumn 40, Issue 4, 2012, Pages 2327-2355

Sharp oracle inequalities for aggregation of affine estimators

Author keywords

Aggregation; Exponentially weighted aggregation.; Minimax risk; Model selection; Oracle inequalities; Regression

Indexed keywords


EID: 84884954887     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1038     Document Type: Article
Times cited : (53)

References (66)
  • 1
    • 79960999147 scopus 로고    scopus 로고
    • PAC-Bayesian bounds for sparse regression estimation with exponential weights
    • MR2786484
    • ALQUIER, P. and LOUNICI, K. (2011). PAC-Bayesian bounds for sparse regression estimation with exponential weights. Electron. J. Stat. 5 127-145. MR2786484
    • (2011) Electron. J. Stat. , vol.5 , pp. 127-145
    • Alquier, P.1    Lounici, K.2
  • 2
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • AMIT, Y. and GEMAN, D. (1997). Shape quantization and recognition with randomized trees. Neural Comput. 9 1545-1588.
    • (1997) Neural Comput , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 3
    • 84858713046 scopus 로고    scopus 로고
    • Data-driven calibration of linear estimators with minimal penalties
    • MIT Press, Vancouver
    • ARLOT, S. and BACH, F. (2009). Data-driven calibration of linear estimators with minimal penalties. In NIPS 46-54. MIT Press, Vancouver.
    • (2009) NIPS , pp. 46-54
    • Arlot, S.1    Bach, F.2
  • 4
    • 84964412044 scopus 로고    scopus 로고
    • Progressive mixture rules are deviation suboptimal
    • MIT Press, Vancouver
    • AUDIBERT, J.-Y. (2007). Progressive mixture rules are deviation suboptimal. In NIPS 41-48. MIT Press, Vancouver.
    • (2007) NIPS , pp. 41-48
    • Audibert, J.-Y.1
  • 6
    • 0033459856 scopus 로고    scopus 로고
    • Risk bounds for model selection via penalization
    • MR1679028
    • BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. MR1679028
    • (1999) Probab. Theory Related Fields , vol.113 , pp. 301-413
    • Barron, A.1    BirgÉ, L.2    Massart, P.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. (1996). Bagging predictors. Mach. Learn. 24 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoising algorithms, with a new one
    • MR2162865
    • BUADES, A., COLL, B. andM OREL, J. M. (2005). A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4 490-530. MR2162865
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 490-530
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 9
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • MR2351101
    • BUNEA, F., TSYBAKOV, A. B. andW EGKAMP, M. H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674-1697. MR2351101
    • (2007) Ann. Statist. , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 10
    • 0033248624 scopus 로고    scopus 로고
    • Adaptive wavelet estimation: A block thresholding and oracle inequality approach
    • MR1724035
    • CAI, T. T. (1999). Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. Statist. 27 898-924. MR1724035
    • (1999) Ann. Statist. , vol.27 , pp. 898-924
    • Cai, T.T.1
  • 12
    • 44449170288 scopus 로고    scopus 로고
    • Nonparametric statistical inverse problems
    • MR2421941
    • CAVALIER, L. (2008). Nonparametric statistical inverse problems. Inverse Problems 24 19. MR2421941
    • (2008) Inverse Problems , vol.24 , pp. 19
    • Cavalier, L.1
  • 14
    • 0036022583 scopus 로고    scopus 로고
    • Sharp adaptation for inverse problems with random noise
    • MR1918537
    • CAVALIER, L. and TSYBAKOV, A. (2002). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123 323-354. MR1918537
    • (2002) Probab. Theory Related Fields , vol.123 , pp. 323-354
    • Cavalier, L.1    Tsybakov, A.2
  • 15
    • 0344907384 scopus 로고    scopus 로고
    • Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation
    • MR1867161
    • CAVALIER, L. and TSYBAKOV, A. B. (2001). Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation. Math. Methods Statist. 10 247-282. MR1867161
    • (2001) Math. Methods Statist. , vol.10 , pp. 247-282
    • Cavalier, L.1    Tsybakov, A.B.2
  • 17
    • 84872080947 scopus 로고    scopus 로고
    • Deviation optimal learning using greedy Q -aggregation
    • To appear. arXiv:1203.2507
    • DAI, D., RIGOLLET, P. and ZHANG, T. (2012). Deviation optimal learning using greedy Q -aggregation. Ann. Statist. To appear. Available at arXiv:1203.2507.
    • (2012) Ann. Statist.
    • Dai, D.1    Rigollet, P.2    Zhang, T.3
  • 18
    • 85162557989 scopus 로고    scopus 로고
    • Greedy model averaging
    • MIT Press, Granada
    • DAI, D. and ZHANG, T. (2011). Greedy model averaging. In NIPS 1242-1250. MIT Press, Granada.
    • (2011) NIPS , pp. 1242-1250
    • Dai, D.1    Zhang, T.2
  • 19
    • 80054093390 scopus 로고    scopus 로고
    • Competing against the best nearest neighbor filter in regression
    • Springer, Berlin.
    • DALALYAN, A. S. and SALMON, J. (2011). Competing against the best nearest neighbor filter in regression. In ALT. Lecture Notes in Computer Science 6925 129-143. Springer, Berlin.
    • (2011) ALT.Lecture Notes in Computer Science , vol.6925 , pp. 129-143
    • Dalalyan, A.S.1    Salmon, J.2
  • 21
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • Springer, Berlin. MR2397581
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2007). Aggregation by exponential weighting and sharp oracle inequalities. In Learning Theory. Lecture Notes in Computer Science 4539 97-111. Springer, Berlin. MR2397581
    • (2007) Learning Theory. Lecture Notes in Computer Science , vol.4539 , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 22
    • 70350003059 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity. Mach. Learn. 72 39-61.
    • (2008) Mach. Learn. , vol.72 , pp. 39-61
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 23
    • 84861604276 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin Monte-Carlo
    • MR2926142
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2012). Sparse regression learning by aggregation and Langevin Monte-Carlo. J. Comput. System Sci. 78 1423-1443. MR2926142
    • (2012) J. Comput. System Sci. , vol.78 , pp. 1423-1443
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 24
    • 84871602377 scopus 로고    scopus 로고
    • Mirror averaging with sparsity priors
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2012). Mirror averaging with sparsity priors. Bernoulli 18 914-944.
    • (2012) Bernoulli , vol.18 , pp. 914-944
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 25
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • MR1311089
    • DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. MR1311089
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 26
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • MR1379464
    • DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224. MR1379464
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 27
    • 0001014229 scopus 로고
    • Minimax risk over hyperrectangles, and implications
    • MR1062717
    • DONOHO, D. L., LIU, R. C. andM AC G IBBON, B. (1990).Minimax risk over hyperrectangles, and implications. Ann. Statist. 18 1416-1437. MR1062717
    • (1990) Ann. Statist. , vol.18 , pp. 1416-1437
    • Donoho, D.L.1    Liu, R.C.2    MacGibbon, B.3
  • 28
    • 21444456853 scopus 로고    scopus 로고
    • Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression
    • MR1422411
    • EFROMOVICH, S. and PINSKER, M. (1996). Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression. Statist. Sinica 6 925-942. MR1422411
    • (1996) Statist. Sinica , vol.6 , pp. 925-942
    • Efromovich, S.1    Pinsker, M.2
  • 29
    • 0002409695 scopus 로고
    • A self-training algorithm for nonparametric filtering
    • MR0797991
    • EFROѣMOVICH, S. Y. and PINSKER, M. S. (1984). A self-training algorithm for nonparametric filtering. Avtomat. i Telemekh. 11 58-65. MR0797991
    • (1984) Avtomat. I Telemekh. , vol.11 , pp. 58-65
    • EfroѤmovich, S.Y.1    Pinsker, M.S.2
  • 30
    • 85043515682 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Morgan Kaufmann, Rochester
    • FREUND, Y. (1990). Boosting a weak learning algorithm by majority. In COLT 202-216. Morgan Kaufmann, Rochester.
    • (1990) COLT , pp. 202-216
    • Freund, Y.1
  • 31
    • 79960119506 scopus 로고    scopus 로고
    • Hyper-sparse optimal aggregation
    • MR2819018
    • G AÏFFAS, S. and LECUÉ, G. (2011). Hyper-sparse optimal aggregation. J. Mach. Learn. Res. 12 1813-1833. MR2819018
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1813-1833
    • Gaïffas, S.1    Lecué, G.2
  • 32
    • 0000497169 scopus 로고
    • Minimax multiple shrinkage estimation
    • MR0829562
    • GEORGE, E. I. (1986). Minimax multiple shrinkage estimation. Ann. Statist. 14 188-205. MR0829562
    • (1986) Ann. Statist. , vol.14 , pp. 188-205
    • George, E.I.1
  • 33
    • 84898026009 scopus 로고    scopus 로고
    • Sparsity regret bounds for individual sequences in online linear regression
    • GERCHINOVITZ, S. (2011). Sparsity regret bounds for individual sequences in online linear regression. J. Mach. Learn. Res. 19 377-396.
    • (2011) J. Mach. Learn. Res. , vol.19 , pp. 377-396
    • Gerchinovitz, S.1
  • 34
    • 58149358999 scopus 로고    scopus 로고
    • Mixing least-squares estimators when the variance is unknown
    • MR2543587
    • GIRAUD, C. (2008). Mixing least-squares estimators when the variance is unknown. Bernoulli 14 1089-1107. MR2543587
    • (2008) Bernoulli , vol.14 , pp. 1089-1107
    • Giraud, C.1
  • 35
    • 58149352562 scopus 로고    scopus 로고
    • Universal pointwise selection rule in multivariate function estimation
    • MR2543590
    • GOLDENSHLUGER, A. and LEPSKI, O. (2008). Universal pointwise selection rule in multivariate function estimation. Bernoulli 14 1150-1190. MR2543590
    • (2008) Bernoulli , vol.14 , pp. 1150-1190
    • Goldenshluger, A.1    Lepski, O.2
  • 36
    • 77957596336 scopus 로고    scopus 로고
    • On universal oracle inequalities related to high-dimensional linear models
    • MR2722455
    • GOLUBEV, Y. (2010). On universal oracle inequalities related to high-dimensional linear models. Ann. Statist. 38 2751-2780. MR2722455
    • (2010) Ann. Statist. , vol.38 , pp. 2751-2780
    • Golubev, Y.1
  • 37
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric regression
    • MR1792783
    • JUDITSKY, A. andN EMIROVSKI, A. (2000). Functional aggregation for nonparametric regression. Ann. Statist. 28 681-712. MR1792783
    • (2000) Ann. Statist. , vol.28 , pp. 681-712
    • Juditsky, A.1    Nemirovski, A.2
  • 38
    • 67650395681 scopus 로고    scopus 로고
    • Nonparametric denoising of signals with unknown local structure. I. Oracle inequalities
    • MR2543191
    • JUDITSKY, A. and NEMIROVSKI, A. (2009). Nonparametric denoising of signals with unknown local structure. I. Oracle inequalities. Appl. Comput. Harmon. Anal. 27 157-179. MR2543191
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , pp. 157-179
    • Juditsky, A.1    Nemirovski, A.2
  • 40
    • 21844488410 scopus 로고
    • Ordered linear smoothers
    • MR1292543
    • KNEIP, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835-866. MR1292543
    • (1994) Ann. Statist. , vol.22 , pp. 835-866
    • Kneip, A.1
  • 42
    • 85156230827 scopus 로고    scopus 로고
    • PAC-Bayes & margins
    • MIT Press, Vancouver
    • LANGFORD, J. and SHAWE-TAYLOR, J. (2002). PAC-Bayes & margins. In NIPS 423-430. MIT Press, Vancouver.
    • (2002) NIPS , pp. 423-430
    • Langford, J.1    Shawe-Taylor, J.2
  • 43
    • 84873388227 scopus 로고    scopus 로고
    • On the optimality of the aggregate with exponential weights for low temperatures
    • To appear
    • LECUÉ, G. andM ENDELSON, S. (2012). On the optimality of the aggregate with exponential weights for low temperatures. Bernoulli. To appear.
    • (2012) Bernoulli.
    • Lecué, G.1    Mendelson, S.2
  • 45
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • MR2242356
    • LEUNG, G. and BARRON, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 3396-3410. MR2242356
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 46
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and D -convex aggregation
    • MR2356820
    • LOUNICI, K. (2007). Generalized mirror averaging and D -convex aggregation. Math. Methods Statist. 16 246-259. MR2356820
    • (2007) Math. Methods Statist. , vol.16 , pp. 246-259
    • Lounici, K.1
  • 49
    • 0000056063 scopus 로고    scopus 로고
    • Optimal filtration of square-integrable signals in Gaussian noise
    • MR0624591
    • PINSKER, M. S. Optimal filtration of square-integrable signals in Gaussian noise. Probl. Peredachi Inf. 16 52-68. MR0624591
    • Probl. Peredachi Inf. , vol.16 , pp. 52-68
    • Pinsker, M.S.1
  • 50
    • 0034361296 scopus 로고    scopus 로고
    • Adaptive weights smoothing with applications to image restoration
    • MR1749543
    • POLZEHL, J. and SPOKOINY, V. G. (2000). Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 335-354. MR1749543
    • (2000) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.62 , pp. 335-354
    • Polzehl, J.1    Spokoiny, V.G.2
  • 51
    • 84866861743 scopus 로고    scopus 로고
    • Kullback-Leibler aggregation and misspecified generalized linear models
    • RIGOLLET, P. (2012). Kullback-Leibler aggregation and misspecified generalized linear models. Ann. Statist. 40 639-665.
    • (2012) Ann. Statist. , vol.40 , pp. 639-665
    • Rigollet, P.1
  • 52
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • MR2816337
    • RIGOLLET, P. and TSYBAKOV, A. (2011). Exponential screening and optimal rates of sparse estimation. Ann. Statist. 39 731-771. MR2816337
    • (2011) Ann. Statist. , vol.39 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.2
  • 53
    • 77955137685 scopus 로고    scopus 로고
    • Linear and convex aggregation of density estimators
    • MR2356821
    • RIGOLLET, P. and TSYBAKOV, A. B. (2007). Linear and convex aggregation of density estimators. Math. Methods Statist. 16 260-280. MR2356821
    • (2007) Math. Methods Statist. , vol.16 , pp. 260-280
    • Rigollet, P.1    Tsybakov, A.B.2
  • 55
    • 84898450217 scopus 로고    scopus 로고
    • Optimal aggregation of affine estimators
    • SALMON, J. andDALALYAN, A. S. (2011). Optimal aggregation of affine estimators. J. Mach. Learn. Res. 19 635-660.
    • (2011) J. Mach. Learn. Res. , vol.19 , pp. 635-660
    • Salmon, J.1    Dalalyan, A.S.2
  • 56
    • 77951942144 scopus 로고    scopus 로고
    • NL-Means and aggregation procedures
    • IEEE, Caìro
    • SALMON, J. and L E PENNEC, E. (2009). NL-Means and aggregation procedures. In ICIP 2977-2980. IEEE, Caìro.
    • (2009) ICIP , pp. 2977-2980
    • Salmon, J.1    Le Pennec, E.2
  • 57
    • 0041464774 scopus 로고    scopus 로고
    • PAC-Bayesian generalisation error bounds for Gaussian process classification
    • MR1971338
    • SEEGER, M. (2003). PAC-Bayesian generalisation error bounds for Gaussian process classification. J. Mach. Learn. Res. 3 233-269. MR1971338
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 233-269
    • Seeger, M.1
  • 59
    • 0002252252 scopus 로고
    • Estimation of the mean of a multivariate distribution
    • Charles Univ., Prague
    • STEIN, C. M. (1973). Estimation of the mean of a multivariate distribution. In Proc. Prague Symp. Asymptotic Statist. Charles Univ., Prague.
    • (1973) Proc. Prague Symp. Asymptotic Statist.
    • Stein, C.M.1
  • 60
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • Springer, Washington, DC
    • TSYBAKOV, A. B. (2003). Optimal rates of aggregation. In COLT 303-313. Springer, Washington, DC.
    • (2003) COLT , pp. 303-313
    • Tsybakov, A.B.1
  • 63
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • MR1790617
    • YANG, Y. (2000). Combining different procedures for adaptive regression. J. Multivariate Anal. 74 135-161. MR1790617
    • (2000) J. Multivariate Anal. , vol.74 , pp. 135-161
    • Yang, Y.1
  • 64
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • MR1997174
    • YANG, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statist. Sinica 13 783-809. MR1997174
    • (2003) Statist. Sinica , vol.13 , pp. 783-809
    • Yang, Y.1
  • 65
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • MR2044592
    • YANG, Y. (2004). Aggregating regression procedures to improve performance. Bernoulli 10 25-47. MR2044592
    • (2004) Bernoulli , vol.10 , pp. 25-47
    • Yang, Y.1
  • 66
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • MR2212574
    • YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67. MR2212574
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.