메뉴 건너뛰기




Volumn 18, Issue 3, 2012, Pages 914-944

Mirror averaging with sparsity priors

Author keywords

Aggregation of estimators; Mirror averaging; Oracle inequalities; sparsity

Indexed keywords


EID: 84871602377     PISSN: 13507265     EISSN: None     Source Type: Journal    
DOI: 10.3150/11-BEJ361     Document Type: Article
Times cited : (38)

References (60)
  • 1
    • 50449094780 scopus 로고    scopus 로고
    • On optimality of Bayesian testimation in the normal means problem
    • MR2363971
    • Abramovich, F., Grinshtein, V. and Pensky, M. (2007). On optimality of Bayesian testimation in the normal means problem. Ann. Statist. 35 2261-2286. MR2363971
    • (2007) Ann. Statist. , vol.35 , pp. 2261-2286
    • Abramovich, F.1    Grinshtein, V.2    Pensky, M.3
  • 2
    • 79960993628 scopus 로고    scopus 로고
    • PAC-Bayesian bounds for randomized empirical risk minimizers
    • MR2483458
    • Alquier, P. (2008). PAC-Bayesian bounds for randomized empirical risk minimizers. Math. Methods Statist. 17 279-304. MR2483458
    • (2008) Math. Methods Statist. , vol.17 , pp. 279-304
    • Alquier, P.1
  • 3
    • 68649088331 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • MR2533466
    • Audibert, J.Y. (2009). Fast learning rates in statistical inference through aggregation. Ann. Statist. 37 1591-1646. MR2533466
    • (2009) Ann. Statist. , vol.37 , pp. 1591-1646
    • Audibert, J.Y.1
  • 4
    • 0002168687 scopus 로고
    • Are bayes rules consistent in information?
    • (T.M. Cover and B. Gopinath, eds.) New York: Springer.
    • Barron, A (1987). Are Bayes rules consistent in information? In Open Problems in Communication and Computation (T.M. Cover and B. Gopinath, eds.) 85-91. New York: Springer.
    • (1987) Open Problems in Communication and Computation , pp. 85-91
    • Barron, A.1
  • 7
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • Bickel, P.J., Ritov, Y. and Tsybakov, A.B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 8
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • MR1365720
    • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373- 384. MR1365720
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 9
    • 41949142938 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • MR2450298
    • Bunea, F. and Nobel, A. (2008). Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. Theory 54 1725-1735. MR2450298
    • (2008) IEEE Trans. Inform. Theory , vol.54 , pp. 1725-1735
    • Bunea, F.1    Nobel, A.2
  • 12
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • MR2351101
    • Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674-1697. MR2351101
    • (2007) Ann. Statist. , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 13
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • (electronic). MR2312149
    • Bunea, F., Tsybakov, A.B. and Wegkamp, M. (2007). Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1 169-194 (electronic). MR2312149
    • (2007) Electron. J. Stat. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.3
  • 14
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 15
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Zürich: Eur. Math. Soc. MR2275736
    • Candès, E.J. (2006). Compressive sampling. In International Congress of Mathematicians. Vol. III 1433-1452. Zürich: Eur. Math. Soc. MR2275736
    • (2006) International Congress of Mathematicians. , vol.3 , pp. 1433-1452
    • Candès, E.J.1
  • 16
    • 33646360369 scopus 로고    scopus 로고
    • Statistical learning theory and stochastic optimization
    • Berlin: Springer. Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, July 8-25, 2001-MR2163920
    • Catoni, O. (2004). Statistical Learning Theory and Stochastic Optimization. Lecture Notes in Math. 1851. Berlin: Springer. Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, July 8-25, 2001. MR2163920
    • (2004) Lecture Notes in Math. , vol.1851
    • Catoni, O.1
  • 17
    • 77956910901 scopus 로고    scopus 로고
    • Pac-bayesian supervised classification: The thermodynamics of statistical learning
    • Beachwood, OH: IMS. MR2483528
    • Catoni, O. (2007). Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning. Institute of Mathematical Statistics Lecture Notes - Monograph Series 56. Beachwood, OH: IMS. MR2483528
    • (2007) Institute of Mathematical Statistics Lecture Notes - Monograph Series , vol.56
    • Catoni, O.1
  • 18
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • MR2097190
    • Cesa-Bianchi, N., Conconi, A. and Gentile, C. (2004). On the generalization ability of on-line learning algorithms. IEEE Trans. Inform. Theory 50 2050-2057. MR2097190
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2050-2057
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 20
    • 84898067794 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin Monte-Carlo
    • Published online
    • Dalalyan, A. and Tsybakov, A.B. (2009). Sparse regression learning by aggregation and Langevin Monte-Carlo. In Proceedings of COLT-2009. Published online.
    • (2009) Proceedings of COLT-2009
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 21
    • 84898483917 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin Monte-Carlo
    • To appear. Available at arxiv: 09031223 v3)
    • Dalalyan, A. and Tsybakov, A.B. (2010). Sparse regression learning by aggregation and Langevin Monte-Carlo. J. Comput. System Sci. To appear. Available at arxiv:0903.1223(v3).
    • (2010) J. Comput. System Sci.
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 22
    • 70350003059 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp oracle inequalities and sparsity
    • Dalalyan, A. and Tsybakov, A.B. (2008). Aggregation by exponential weighting, sharp oracle inequalities and sparsity. Machine Learning 72 39-61.
    • (2008) Machine Learning , vol.72 , pp. 39-61
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 23
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • Berlin: Springer. MR2397581
    • Dalalyan, A.S. and Tsybakov, A.B. (2007). Aggregation by exponential weighting and sharp oracle inequalities. In Learning Theory. Lecture Notes in Computer Science 4539 97-111. Berlin: Springer. MR2397581
    • (2007) Learning Theory. Lecture Notes in Computer Science , vol.4539 , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 24
    • 0347427624 scopus 로고    scopus 로고
    • Large deviations techniques and applications, 2nd ed
    • (New York). New York: Springer. MR1619036
    • Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. New York: Springer. MR1619036
    • (1998) Applications of Mathematics , vol.38
    • Dembo, A.1    Zeitouni, O.2
  • 25
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • MR2237332
    • Donoho, D.L., Elad, M. and Temlyakov, V.N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52 6-18. MR2237332
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 27
    • 58149358999 scopus 로고    scopus 로고
    • Least-squares estimators when the variance is unknown
    • MR2543587
    • Giraud, C. (2008).Mixing least-squares estimators when the variance is unknown. Bernoulli 14 1089- 1107. MR2543587
    • (2008) Bernoulli , vol.14 , pp. 1089-1107
    • Giraud, C.1
  • 28
    • 65349157787 scopus 로고    scopus 로고
    • A universal procedure for aggregating estimators
    • MR2488362
    • Goldenshluger, A. (2009). A universal procedure for aggregating estimators. Ann. Statist. 37 542-568. MR2488362
    • (2009) Ann. Statist. , vol.37 , pp. 542-568
    • Goldenshluger, A.1
  • 29
    • 0032164946 scopus 로고    scopus 로고
    • Sequential prediction of individual sequences under general loss functions
    • MR1664051
    • Haussler, D., Kivinen, J. and Warmuth, M.K. (1998). Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory 44 1906-1925. MR1664051
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 1906-1925
    • Haussler, D.1    Kivinen, J.2    Warmuth, M.K.3
  • 30
    • 18444410406 scopus 로고    scopus 로고
    • Empirical bayes selection of wavelet thresholds
    • MR2166560
    • Johnstone, I.M. and Silverman, B.W. (2005). Empirical Bayes selection of wavelet thresholds. Ann. Statist. 33 1700-1752. MR2166560
    • (2005) Ann. Statist. , vol.33 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 31
    • 54349121305 scopus 로고    scopus 로고
    • Learning by mirror averaging
    • MR2458184
    • Juditsky, A., Rigollet, P. and Tsybakov, A.B. (2008). Learning by mirror averaging. Ann. Statist. 36 2183-2206. MR2458184
    • (2008) Ann. Statist. , vol.36 , pp. 2183-2206
    • Juditsky, A.1    Rigollet, P.2    Tsybakov, A.B.3
  • 32
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators by the mirror descent algorithm with averaging
    • Juditsky, A.B., Nazin, A.V., Tsybakov, A.B. and Vayatis, N. (2005). Recursive aggregation of estimators by the mirror descent algorithm with averaging. Probl. Inf. Transm. 41 368-384.
    • (2005) Probl. Inf. Transm. , vol.41 , pp. 368-384
    • Juditsky, A.B.1    Nazin, A.V.2    Tsybakov, A.B.3    Vayatis, N.4
  • 33
    • 84947769648 scopus 로고    scopus 로고
    • Smoothing of multivariate data: Density estimation and visualization
    • Hoboken, NJ: Wiley. MR2640738
    • Klemelä, J. (2009). Smoothing of Multivariate Data: Density Estimation and Visualization. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley. MR2640738
    • (2009) Wiley Series in Probability and Statistics
    • Klemelä, J.1
  • 34
    • 72249100613 scopus 로고    scopus 로고
    • The dantzig selector and sparsity oracle inequalities
    • MR2555200
    • Koltchinskii, V. (2009). The Dantzig selector and sparsity oracle inequalities. Bernoulli 15 799-828. MR2555200
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 35
    • 68849132263 scopus 로고    scopus 로고
    • Sparse recovery in convex hulls via entropy penalization
    • MR2509076
    • Koltchinskii, V. (2009). Sparse recovery in convex hulls via entropy penalization. Ann. Statist. 37 1332-1359. MR2509076
    • (2009) Ann. Statist. , vol.37 , pp. 1332-1359
    • Koltchinskii, V.1
  • 36
    • 62549157465 scopus 로고    scopus 로고
    • Sparsity in penalized empirical risk minimization
    • MR2500227
    • Koltchinskii, V. (2009). Sparsity in penalized empirical risk minimization. Ann. Inst. Henri Poincaré Probab. Stat. 45 7-57. MR2500227
    • (2009) Ann. Inst. Henri Poincaré Probab. Stat. , vol.45 , pp. 7-57
    • Koltchinskii, V.1
  • 37
    • 47249139879 scopus 로고    scopus 로고
    • Optimal rates of aggregation in classification under low noise assumption
    • MR2364224
    • Lecué, G. (2007). Optimal rates of aggregation in classification under low noise assumption. Bernoulli 13 1000-1022. MR2364224
    • (2007) Bernoulli , vol.13 , pp. 1000-1022
    • Lecué, G.1
  • 38
    • 84873388227 scopus 로고    scopus 로고
    • On the optimality of the aggregate with exponential weights for low temperature
    • To appear.
    • Lecué, G. and Mendelson, S. On the optimality of the aggregate with exponential weights for low temperature. Bernoulli. To appear. Available at http://www.e-publications.org/ims/submission/index.php/BEJ/user/submissionFile/ 8682?confirm=f72acebe.
    • Bernoulli
    • Lecué, G.1    Mendelson, S.2
  • 39
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • MR2242356
    • Leung, G. and Barron, A.R. (2006). Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 3396-3410. MR2242356
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 40
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and D-convex aggregation
    • MR2356820
    • Lounici, K. (2007). Generalized mirror averaging and D-convex aggregation. Math. Methods Statist. 16 246-259. MR2356820
    • (2007) Math. Methods Statist. , vol.16 , pp. 246-259
    • Lounici, K.1
  • 41
    • 0037399538 scopus 로고    scopus 로고
    • PAC-Bayesian stochastic model selection
    • McAllester, D. (2003). PAC-Bayesian stochastic model selection. Machine Learning 51 5-21.
    • (2003) Machine Learning , vol.51 , pp. 5-21
    • McAllester, D.1
  • 42
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 43
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • Rigollet, P. and Tsybakov, A.B. (2011). Exponential screening and optimal rates of sparse estimation. Ann. Statist. 39 731-771.
    • (2011) Ann. Statist. , vol.39 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.B.2
  • 44
    • 33846124233 scopus 로고    scopus 로고
    • Nonlinear estimation over weak Besov spaces and minimax Bayes method
    • MR2248230
    • Rivoirard, V. (2006). Nonlinear estimation over weak Besov spaces and minimax Bayes method. Bernoulli 12 609-632. MR2248230
    • (2006) Bernoulli , vol.12 , pp. 609-632
    • Rivoirard, V.1
  • 45
    • 77951942144 scopus 로고    scopus 로고
    • NL-Means and aggregation procedures
    • Salmon, J. and Le Pennec, E. (2009). NL-Means and aggregation procedures. Proc. ICIP 2009 2941- 2944.
    • (2009) Proc. ICIP , vol.2009 , pp. 2941-2944
    • Salmon, J.1    Le Pennec, E.2
  • 46
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • MR2417254
    • Seeger, M.W. (2008). Bayesian inference and optimal design for the sparse linear model. J. Mach. Learn. Res. 9 759-813. MR2417254
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 759-813
    • Seeger, M.W.1
  • 47
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • (B. Schölkopf and M. Warmuth, eds.). Lecture Notes in Artificial Intelligence Heidelberg: Springer
    • Tsybakov, A.B. (2003). Optimal rates of aggregation. In Computational Learning Theory and Kernel Machines (B. Schölkopf and M. Warmuth, eds.). Lecture Notes in Artificial Intelligence 2777 303- 313. Heidelberg: Springer.
    • (2003) Computational Learning Theory and Kernel Machines , vol.2777 , pp. 303-313
    • Tsybakov, A.B.1
  • 48
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • MR2051002
    • Tsybakov, A.B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135- 166. MR2051002
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 49
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • MR2396809
    • van de Geer, S.A. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36 614-645. MR2396809
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.A.1
  • 51
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • MR1946426
    • Yang, Y. (2001). Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 574-588. MR1946426
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 574-588
    • Yang, Y.1
  • 52
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • MR1997174
    • Yang, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statist. Sinica 13 783-809. MR1997174
    • (2003) Statist. Sinica , vol.13 , pp. 783-809
    • Yang, Y.1
  • 53
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • MR2044592
    • Yang, Y. (2004). Aggregating regression procedures to improve performance. Bernoulli 10 25-47. MR2044592
    • (2004) Bernoulli , vol.10 , pp. 25-47
    • Yang, Y.1
  • 54
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in high-dimensional linear regression
    • MR2435448
    • Zhang, C.H. and Huang, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 55
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • MR2051001
    • Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 56-85. MR2051001
    • (2004) Ann. Statist. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 56
    • 33847361463 scopus 로고    scopus 로고
    • From entropy to KL-entropy: Analysis of minimum information complexity density estimation
    • MR2291497
    • Zhang, T. (2006). From entropy to KL-entropy: Analysis of minimum information complexity density estimation. Ann. Statist. 34 2180-2210. MR2291497
    • (2006) Ann. Statist. , vol.34 , pp. 2180-2210
    • Zhang, T.1
  • 57
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with L1 regularization
    • MR2543687
    • Zhang, T. (2009). Some sharp performance bounds for least squares regression with L1 regularization. Ann. Statist. 37 2109-2144. MR2543687
    • (2009) Ann. Statist. , vol.37 , pp. 2109-2144
    • Zhang, T.1
  • 58
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541- 2563. MR2274449
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 59
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 60
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • MR2137327
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320. MR2137327
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.