메뉴 건너뛰기




Volumn 35, Issue 4, 2007, Pages 1674-1697

Aggregation for Gussian regression

Author keywords

Aggregation; Lasso estimator; Minimax risk; Model averaging; Model selection; Nonparametric regression; Oracle inequalities; Penalized least squares

Indexed keywords


EID: 38049043619     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053606000001587     Document Type: Article
Times cited : (239)

References (45)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control 19 716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • AKAIKE, H.1
  • 2
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelet approximations (with discussion)
    • ANTONIADIS, A. and FAN, J. (2001). Regularization of wavelet approximations (with discussion). J. Amer. Statist. Assoc. 96 939-967.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 939-967
    • ANTONIADIS, A.1    FAN, J.2
  • 3
    • 4944233194 scopus 로고    scopus 로고
    • Aggregated estimators and empirical complexity for least square regression
    • AUDIBERT, J.-Y. (2004). Aggregated estimators and empirical complexity for least square regression. Ann. Inst. H. Poincaré Probab. Statist. 40 685-736.
    • (2004) Ann. Inst. H. Poincaré Probab. Statist , vol.40 , pp. 685-736
    • AUDIBERT, J.-Y.1
  • 4
    • 0034398141 scopus 로고    scopus 로고
    • Model selection for regression on a fixed design
    • BARAUD, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Related Fields 117 467-493.
    • (2000) Probab. Theory Related Fields , vol.117 , pp. 467-493
    • BARAUD, Y.1
  • 5
    • 0036997840 scopus 로고    scopus 로고
    • Model selection for regression on a random design
    • BARAUD, Y. (2002). Model selection for regression on a random design. ESAIM Probab. Statist. 6 127-146.
    • (2002) ESAIM Probab. Statist , vol.6 , pp. 127-146
    • BARAUD, Y.1
  • 6
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • BARRON, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • BARRON, A.R.1
  • 9
    • 33645301284 scopus 로고    scopus 로고
    • Model selection via testing: An alternative to (penalized) maximum likelihood estimators
    • BIRGÉ, L. (2006). Model selection via testing: An alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist. 42 273-325.
    • (2006) Ann. Inst. H. Poincaré Probab. Statist , vol.42 , pp. 273-325
    • BIRGÉ, L.1
  • 10
    • 0003281721 scopus 로고    scopus 로고
    • Gaussian model selection
    • BIRGÉ, L. and MASSART, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203-268.
    • (2001) J. Eur. Math. Soc , vol.3 , pp. 203-268
    • BIRGÉ, L.1    MASSART, P.2
  • 11
    • 50449102316 scopus 로고    scopus 로고
    • p criterion for Gaussian model selection. Prépublication 647, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at www.proba.jussieu.fr/ mathdoc/preprints/index.html# 2001.
    • p criterion for Gaussian model selection. Prépublication 647, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at www.proba.jussieu.fr/ mathdoc/preprints/index.html# 2001.
  • 12
    • 3142698865 scopus 로고    scopus 로고
    • Consistent covariate selection and postmodel selection inference in semi-parametric regression
    • BUNEA, F. (2004). Consistent covariate selection and postmodel selection inference in semi-parametric regression. Ann. Statist. 32 898-927.
    • (2004) Ann. Statist , vol.32 , pp. 898-927
    • BUNEA, F.1
  • 13
    • 33746077372 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • Technical Report M984, Dept. Statistics, Florida State Univ
    • BUNEA, F. and NOBEL, A. B. (2005). Sequential procedures for aggregating arbitrary estimators of a conditional mean. Technical Report M984, Dept. Statistics, Florida State Univ.
    • (2005)
    • BUNEA, F.1    NOBEL, A.B.2
  • 14
    • 50449088613 scopus 로고    scopus 로고
    • BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. H. (2004). Aggregation for regression learning. Available at www.arxiv.org/abs/ math/0410214. Prépublication 948, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at hal.ccsd.cnrs.fr/ccsd-00003205.
    • BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. H. (2004). Aggregation for regression learning. Available at www.arxiv.org/abs/ math/0410214. Prépublication 948, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at hal.ccsd.cnrs.fr/ccsd-00003205.
  • 15
    • 33646360369 scopus 로고    scopus 로고
    • Statistical Learning Theory and Stochastic Optimization
    • École d'Eté de Probabilités de Saint-Flour 2001, Springer, Berlin
    • CATONI, O. (2004). Statistical Learning Theory and Stochastic Optimization. École d'Eté de Probabilités de Saint-Flour 2001. Lecture Notes in Math. 1851. Springer, Berlin.
    • (2004) Lecture Notes in Math , vol.1851
    • CATONI, O.1
  • 17
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • CHEN, S., DONOHO, D. and SAUNDERS, M. (2001). Atomic decomposition by basis pursuit. SIAM Rev. 43 129-159.
    • (2001) SIAM Rev , vol.43 , pp. 129-159
    • CHEN, S.1    DONOHO, D.2    SAUNDERS, M.3
  • 19
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse over-complete representations in the presence of noise
    • DONOHO, D. L., ELAD, M. and TEMLYAKOV, V. (2006). Stable recovery of sparse over-complete representations in the presence of noise. IEEE Trans. Inform. Theory 52 6-18.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 6-18
    • DONOHO, D.L.1    ELAD, M.2    TEMLYAKOV, V.3
  • 21
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. and GEORGE, E. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
    • (1994) Ann. Statist , vol.22 , pp. 1947-1975
    • FOSTER, D.1    GEORGE, E.2
  • 22
    • 0001287361 scopus 로고
    • A comparison of signalling alphabets
    • GILBERT, E. N. (1952). A comparison of signalling alphabets. Bell System Tech. J. 31 504-522.
    • (1952) Bell System Tech. J , vol.31 , pp. 504-522
    • GILBERT, E.N.1
  • 25
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators by the mirror descent method with averaging
    • JUDITSKY, A., NAZIN, A., TSYBAKOV, A. and VAYATIS, N. (2005). Recursive aggregation of estimators by the mirror descent method with averaging. Problems Inform. Transmission 41 368-384.
    • (2005) Problems Inform. Transmission , vol.41 , pp. 368-384
    • JUDITSKY, A.1    NAZIN, A.2    TSYBAKOV, A.3    VAYATIS, N.4
  • 26
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric regression
    • JUDITSKY, A. andNEMIROVSKI, A. (2000). Functional aggregation for nonparametric regression. Ann. Statist. 28 681-712.
    • (2000) Ann. Statist , vol.28 , pp. 681-712
    • JUDITSKY, A.1    andNEMIROVSKI, A.2
  • 27
    • 50449095831 scopus 로고    scopus 로고
    • JUDITSKY, A., RIGOLLET, P. and TSYBAKOV, A. (2005). Learning by mirror averaging. Prépublication du Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at hal.ccsd.cnrs.fr/ccsd-00014097.
    • JUDITSKY, A., RIGOLLET, P. and TSYBAKOV, A. (2005). Learning by mirror averaging. Prépublication du Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at hal.ccsd.cnrs.fr/ccsd-00014097.
  • 28
    • 21844488410 scopus 로고
    • Ordered linear smoothers
    • KNEIP, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835-866.
    • (1994) Ann. Statist , vol.22 , pp. 835-866
    • KNEIP, A.1
  • 29
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization (with discussion)
    • KOLTCHINSKII, V. (2006). Local Rademacher complexities and oracle inequalities in risk minimization (with discussion). Ann. Statist. 34 2593-2706.
    • (2006) Ann. Statist , vol.34 , pp. 2593-2706
    • KOLTCHINSKII, V.1
  • 30
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • LEUNG, G. and BARRON, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 3396-3410.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 3396-3410
    • LEUNG, G.1    BARRON, A.R.2
  • 31
    • 0036872087 scopus 로고    scopus 로고
    • Adaptive estimation with soft thresholding penalties
    • LOUBES, J.-M. and VAN DE GEER, S. A. (2002). Adaptive estimation with soft thresholding penalties. Statist. Neerlandica 56 454-479.
    • (2002) Statist. Neerlandica , vol.56 , pp. 454-479
    • LOUBES, J.-M.1    VAN DE GEER, S.A.2
  • 32
    • 0033234644 scopus 로고    scopus 로고
    • Adaptive model selection using empirical complexities
    • LUGOSI, G. and NOBEL, A. (1999). Adaptive model selection using empirical complexities. Ann. Statist. 27 1830-1864.
    • (1999) Ann. Statist , vol.27 , pp. 1830-1864
    • LUGOSI, G.1    NOBEL, A.2
  • 34
    • 0007259908 scopus 로고    scopus 로고
    • Topics in non-parametric statistics
    • Lectures on Probability Theory and Statistics Saint-Flour, Springer, Berlin
    • NEMIROVSKI, A. (2000). Topics in non-parametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture Notes in Math. 1738 85-277. Springer, Berlin.
    • (1998) Lecture Notes in Math , vol.1738 , pp. 85-277
    • NEMIROVSKI, A.1
  • 36
    • 15344338513 scopus 로고    scopus 로고
    • On model selection (with discussion)
    • P. Lahiri, ed, IMS, Beachwood, OH
    • RAO, C. R. and WU, Y. (2001). On model selection (with discussion). In Model Selection (P. Lahiri, ed.) 1-64. IMS, Beachwood, OH.
    • (2001) Model Selection , pp. 1-64
    • RAO, C.R.1    WU, Y.2
  • 37
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • SCHAPIRE, R. E. (1990). The strength of weak learnability. Machine Learning 5 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • SCHAPIRE, R.E.1
  • 38
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • SCHWARZ, G.1
  • 39
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 42
    • 21144432799 scopus 로고    scopus 로고
    • Model selection in nonparametric regression
    • WEGKAMP, M. H. (2003). Model selection in nonparametric regression. Ann. Statist. 31 252-273.
    • (2003) Ann. Statist , vol.31 , pp. 252-273
    • WEGKAMP, M.H.1
  • 43
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • YANG, Y. (2000). Combining different procedures for adaptive regression. J. Multivariate Anal. 74 135-161.
    • (2000) J. Multivariate Anal , vol.74 , pp. 135-161
    • YANG, Y.1
  • 44
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • YANG, Y. (2001). Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 574-588.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 574-588
    • YANG, Y.1
  • 45
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • YANG, Y. (2004). Aggregating regression procedures to improve performance. Bernoulli 10 25-47.
    • (2004) Bernoulli , vol.10 , pp. 25-47
    • YANG, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.