메뉴 건너뛰기




Volumn 14, Issue 3, 2013, Pages 315-326

Data mining in the life science swith random forest: A walk in the park or lost in the jungle?

Author keywords

Conditional relationships; Local importance; Proximity; Random Forest; Variable importance; Variable interaction

Indexed keywords

ALGORITHM; ARTICLE; BIOMEDICINE; CONDITIONAL RELATIONSHIPS; DATA MINING; GENETICS; HUMAN; LOCAL IMPORTANCE; NEOPLASM; PROXIMITY; RANDOM FOREST; SINGLE NUCLEOTIDE POLYMORPHISM; VARIABLE IMPORTANCE; VARIABLE INTERACTION;

EID: 84871787691     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbs034     Document Type: Article
Times cited : (296)

References (114)
  • 2
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology
    • a brief overview
    • Kitano H. Systems biology: a brief overview. Science 2002; 295:1662-4.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 4
    • 81355123249 scopus 로고    scopus 로고
    • Software for systems biology
    • from tools to integrated platforms
    • Ghosh S, Matsuoka Y, Asai Y, et al. Software for systems biology: from tools to integrated platforms. Nat Rev Genet 2011;12:821-32.
    • (2011) Nat Rev Genet , vol.12 , pp. 821-832
    • Ghosh, S.1    Matsuoka, Y.2    Asai, Y.3
  • 6
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • Larranaga P. Machine learning in bioinformatics. Brief Bioinform 2006;7:86-112.
    • (2006) Brief Bioinform , vol.7 , pp. 86-112
    • Larranaga, P.1
  • 7
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests
    • a survey and results of new tests
    • Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit 2011;44:330-49.
    • (2011) Pattern Recognit , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn 2001;45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • In: Proceedings of the fifth annualworkshop on Computational learning theory -COLT
    • Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annualworkshop on Computational learning theory -COLT -92,1992;144-52.
    • (1992) , vol.92 , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. BullMathBiophys 1943;5:115-33.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 12
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408.
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 13
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323: 533-36.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 84937350040 scopus 로고
    • Steps toward artificial intelligence
    • Minsky M. Steps toward artificial intelligence. Proc IRE 1961;49:8-30.
    • (1961) Proc IRE , vol.49 , pp. 8-30
    • Minsky, M.1
  • 16
    • 0001494196 scopus 로고
    • Logistic regression analysis of epidemiologic data
    • theory and practice
    • Kleinbaum DG, Kupper LL, Chambless LE. Logistic regression analysis of epidemiologic data: theory and practice. Commun StatTheory 1982;11:485-547.
    • (1982) Commun Stat Theory , vol.11 , pp. 485-547
    • Kleinbaum, D.G.1    Kupper, L.L.2    Chambless, L.E.3
  • 17
    • 22944478488 scopus 로고
    • Discriminatory analysis-nonparametric discrimination
    • consistency properties
    • Fixt E, Hodges JL. Discriminatory analysis-nonparametric discrimination: consistency properties. Int Stat Rev 1989;57: 238-47.
    • (1989) Int Stat Rev , vol.57 , pp. 238-247
    • Fixt, E.1    Hodges, J.L.2
  • 18
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fischer RA. The use of multiple measurements in taxonomic problems. AnnHum Genet 1936;7:179-88.
    • (1936) Ann Hum Genet , vol.7 , pp. 179-188
    • Fischer, R.A.1
  • 19
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman JH. Regularized discriminant analysis. J Am Stat Assoc 1989;84:165-75.
    • (1989) J Am Stat Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 21
    • 4143073317 scopus 로고
    • Classification and regression trees
    • TheWadsworth Statistics Probability Series
    • Breiman L, Friedman JH, Olshen RA, et al. Classification and regression trees. TheWadsworth Statistics Probability Series 1984;19:368.
    • (1984) , vol.19 , pp. 368
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3
  • 23
  • 24
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008;9:319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 25
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • DyÝaz-Uriarte R, Alvarez de Andre's S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006;7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Dý'az-Uriarte, R.1    Alvarez de Andre's, S.2
  • 26
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features
    • Jiang P, Wu H, Wang W, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 2007;35:W339-44.
    • (2007) Nucleic Acids Res , vol.35
    • Jiang, P.1    Wu, H.2    Wang, W.3
  • 27
    • 33747841010 scopus 로고    scopus 로고
    • Pathway analysis using random forests classification and regression
    • Pang H, Lin A, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics 2006;22:2028-36.
    • (2006) Bioinformatics , vol.22 , pp. 2028-2036
    • Pang, H.1    Lin, A.2    Holford, M.3
  • 28
    • 19544392545 scopus 로고    scopus 로고
    • Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information
    • Bao L, Cui Y. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 2005;21:2185-90.
    • (2005) Bioinformatics , vol.21 , pp. 2185-2190
    • Bao, L.1    Cui, Y.2
  • 29
    • 84892441986 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction
    • Qi Y, Bar-Joseph Z, Klein-seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction. Bioinformatics 2006; 500:490-500.
    • (2006) Bioinformatics , vol.500 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-seetharaman, J.3
  • 30
    • 0003787146 scopus 로고
    • Rand Corporation Dynamic Programming
    • Princeton: Princeton University Press
    • Bellman RE. RandCorporation Dynamic Programming. Princeton: Princeton University Press, 1957;342.
    • (1957) , pp. 342
    • Bellman, R.E.1
  • 31
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • Somorjai RL, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003;19:1484-91.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 32
    • 12744259874 scopus 로고    scopus 로고
    • Identifying SNPs predictive of phenotype using random forests
    • Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 2005;28:171-82.
    • (2005) Genet Epidemiol , vol.28 , pp. 171-182
    • Bureau, A.1    Dupuis, J.2    Falls, K.3
  • 33
    • 80053283605 scopus 로고    scopus 로고
    • A comparison of methods for classifying clinical samples based on proteomics data
    • a case study for statistical and machine learning approaches
    • Sampson DL, Parker TJ, Upton Z, et al. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches. PLoS One 2011;6:e24973.
    • (2011) PLoS One , vol.6
    • Sampson, D.L.1    Parker, T.J.2    Upton, Z.3
  • 34
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010;26:445-55.
    • (2010) Bioinformatics , vol.26 , pp. 445-455
    • Moore, J.H.1    Asselbergs, F.W.2    Williams, S.M.3
  • 35
    • 85027927719 scopus 로고    scopus 로고
    • Enterotypes of the human gut microbiome
    • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.
    • (2011) Nature , vol.473 , pp. 174-180
    • Arumugam, M.1    Raes, J.2    Pelletier, E.3
  • 36
    • 59849093889 scopus 로고    scopus 로고
    • Prediction of high-responding peptides for targeted protein assays by mass spectrometry
    • Fusaro VA, Mani DR, Mesirov JP, et al. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 2009;27:190-8.
    • (2009) Nat Biotechnol , vol.27 , pp. 190-198
    • Fusaro, V.A.1    Mani, D.R.2    Mesirov, J.P.3
  • 37
    • 0036463681 scopus 로고    scopus 로고
    • Metabonomics: a platform for studying drug toxicity and gene function
    • Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studying drug toxicity and gene function. Nat RevDrugDiscov 2002;1:153-61.
    • (2002) Nat Rev Drug Discov , vol.1 , pp. 153-161
    • Nicholson, J.K.1    Connelly, J.2    Lindon, J.C.3
  • 38
    • 9144261138 scopus 로고    scopus 로고
    • Mining the structural genomics pipelin
    • identification of protein properties that affect high-throughput experimental analysis
    • Goh C-S, Lan N, Douglas SM, et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol 2004;336:115-30.
    • (2004) J Mol Biol , vol.336 , pp. 115-130
    • Goh, C-S.1    Lan, N.2    Douglas, S.M.3
  • 39
    • 84861730860 scopus 로고    scopus 로고
    • Random forests for genomic data analysis
    • Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012;99:323-9.
    • (2012) Genomics , vol.99 , pp. 323-329
    • Chen, X.1    Ishwaran, H.2
  • 41
    • 0041382385 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L, Cutler A. Random Forests. http://www.stat .berkeley.edu/breiman/RandomForests/.
    • Breiman, L.1    Cutler, A.2
  • 42
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. JRoy Stat Soc BMet 1974;36:111-47.
    • (1974) J Roy Stat Soc B Met , vol.36 , pp. 111-147
    • Stone, M.1
  • 43
    • 84860543260 scopus 로고    scopus 로고
    • PhenoLink - a web-tool for linking phenotype toomics data for bacteria
    • application to gene-trait matching for Lactobacillus plantarum strains
    • Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, van Hijum SAFT. PhenoLink - a web-tool for linking phenotype toomics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains. BMC Genomics 2012;13:170.
    • (2012) BMC Genomics , vol.13 , pp. 170
    • Bayjanov, J.R.1    Molenaar, D.2    Tzeneva, V.3    Siezen, R.J.4    van Hijum, S.A.F.T.5
  • 44
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 45
    • 78651457534 scopus 로고    scopus 로고
    • R Development Core Team
    • R. ALanguage and Environment for Statistical Computing
    • R Development Core Team. R. ALanguage and Environment for Statistical Computing 2012.
    • (2012)
  • 46
    • 77954485448 scopus 로고    scopus 로고
    • On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data
    • Schwarz DF, Ko-nig IR, Ziegler A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 2010;26:1752-8.
    • (2010) Bioinformatics , vol.26 , pp. 1752-1758
    • Schwarz, D.F.1    Ko-nig, I.R.2    Ziegler, A.3
  • 47
    • 65849256988 scopus 로고    scopus 로고
    • Willows: a memory efficient tree and forest construction package
    • Zhang H, Wang M, Chen X. Willows: a memory efficient tree and forest construction package. BMC Bioinformatics 2009;10:130.
    • (2009) BMC Bioinformatics , vol.10 , pp. 130
    • Zhang, H.1    Wang, M.2    Chen, X.3
  • 48
    • 7244250182 scopus 로고    scopus 로고
    • Data mining in bioinformatics using Weka
    • Frank E, Hall M, Trigg L, et al. Data mining in bioinformatics using Weka. Bioinformatics 2004;20:2479-81.
    • (2004) Bioinformatics , vol.20 , pp. 2479-2481
    • Frank, E.1    Hall, M.2    Trigg, L.3
  • 49
    • 19944432091 scopus 로고    scopus 로고
    • A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation
    • Alvarez S, Diaz-Uriarte R, Osorio A, etal. A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 2005;11:1146-53.
    • (2005) Clin Cancer Res , vol.11 , pp. 1146-1153
    • Alvarez, S.1    Diaz-Uriarte, R.2    Osorio, A.3
  • 50
    • 77957883915 scopus 로고    scopus 로고
    • Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12,566 individuals
    • Briggs FBS, Bartlett SE, Goldstein BA, et al. Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12,566 individuals. HumMol Genet 2010;19:4286-95.
    • (2010) Hum Mol Genet , vol.19 , pp. 4286-4295
    • Briggs, F.B.S.1    Bartlett, S.E.2    Goldstein, B.A.3
  • 52
    • 80052880887 scopus 로고    scopus 로고
    • Methods for identifying snp interactions: a review on variations of logic regression
    • random forest and bayesian logistic regression
    • Chen CCM, Schwender H, Keith J, etal. Methods for identifying snp interactions: a review on variations of logic regression, random forest and bayesian logistic regression. IEEE/ACM Trans Comput Biol Bioinf 2011;8: 1580-91.
    • (2011) IEEE/ACM Trans Comput Biol Bioinf , vol.8 , pp. 1580-1591
    • Chen, C.C.M.1    Schwender, H.2    Keith, J.3
  • 53
    • 58249128191 scopus 로고    scopus 로고
    • Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome
    • Christensen BC, Houseman EA, Godleski JJ, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 2009;69:227-34.
    • (2009) Cancer Res , vol.69 , pp. 227-234
    • Christensen, B.C.1    Houseman, E.A.2    Godleski, J.J.3
  • 54
    • 77957157531 scopus 로고    scopus 로고
    • A screening methodology based on Random Forests to improve the detection of gene-gene interactions
    • De Lobel L, Geurts P, Baele G, et al. A screening methodology based on Random Forests to improve the detection of gene-gene interactions. Eur J Hum Genet, 2010;18: 1127-32.
    • (2010) Eur J Hum Genet , vol.18 , pp. 1127-32
    • De Lobel, L.1    Geurts, P.2    Baele, G.3
  • 55
    • 79960135846 scopus 로고    scopus 로고
    • FACIL: fast and accurate genetic code inference and logo
    • Dutilh BE, Jurgelenaite R, Szklarczyk R, et al. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 2011;27:1929-33.
    • (2011) Bioinformatics , vol.27 , pp. 1929-1933
    • Dutilh, B.E.1    Jurgelenaite, R.2    Szklarczyk, R.3
  • 56
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, etal. Screening large-scale association study data: exploiting interactions using random forests. BMCGenet 2004;5:32.
    • (2004) BMC Genet , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3
  • 57
    • 79959731274 scopus 로고    scopus 로고
    • Feature importance analysis in guide strand identification of microRNAs
    • Ma D, Xiao J, Li Y, et al. Feature importance analysis in guide strand identification of microRNAs. Comput Biol Chem 2011;35:131-6.
    • (2011) Comput Biol Chem , vol.35 , pp. 131-136
    • Ma, D.1    Xiao, J.2    Li, Y.3
  • 58
    • 77956288094 scopus 로고    scopus 로고
    • Identification of genetic loci in Lactobacillusplantarum that modulate the immune response of dendritic cells using ccomparative genome hybridization
    • Meijerink M, van chemert S, Taverne N, et al. Identification of genetic loci in Lactobacillusplantarum that modulate the immune response of dendritic cells using ccomparative genome hybridization. PloS One 2010;5:e10632.
    • (2010) PloS One , vol.5
    • Meijerink, M.1    van chemert, S.2    Taverne, N.3
  • 59
    • 79954623588 scopus 로고    scopus 로고
    • Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions
    • Ro-delsperger C, Guo G, Kolanczyk M, et al. Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions. Nucleic Acids Res 2011;39:2492-502.
    • (2011) Nucleic Acids Res , vol.39 , pp. 2492-502
    • Ro-delsperger, C.1    Guo, G.2    Kolanczyk, M.3
  • 60
    • 79955984463 scopus 로고    scopus 로고
    • Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest
    • Roshan U, Chikkagoudar S, Wei Z, et al. Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest. Nucleic Acids Res 2011;39:e62.
    • (2011) Nucleic Acids Res , vol.39
    • Roshan, U.1    Chikkagoudar, S.2    Wei, Z.3
  • 61
    • 38349173162 scopus 로고    scopus 로고
    • Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma
    • Tsou JA, Galler JS, Siegmund KD, et al. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer 2007;6:70.
    • (2007) Mol Cancer , vol.6 , pp. 70
    • Tsou, J.A.1    Galler, J.S.2    Siegmund, K.D.3
  • 62
    • 78149495201 scopus 로고    scopus 로고
    • Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells
    • van chemert S, Meijerink M, Molenaar D, et al. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMCMicrobiol 2010;10:293.
    • (2010) BMC Microbiol , vol.10 , pp. 293
    • van chemert, S.1    Meijerink, M.2    Molenaar, D.3
  • 63
    • 77649254869 scopus 로고    scopus 로고
    • Resistance profile of etravirine
    • combined analysis of baseline genotypic and phenotypic data from the randomized, ccontrolled Phase III clinical studies
    • Vingerhoets J, Tambuyzer L, Azijn H, et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, ccontrolled Phase III clinical studies. AIDS 2010;24:503-14.
    • (2010) AIDS , vol.24 , pp. 503-514
    • Vingerhoets, J.1    Tambuyzer, L.2    Azijn, H.3
  • 64
    • 33750294092 scopus 로고    scopus 로고
    • On the interpretation of high throughput MS based metabolomics fingerprints with random forest
    • Enot DP, Beckmann M, Draper J. On the interpretation of high throughput MS based metabolomics fingerprints with random forest. Metabolomics 2006;226-35..
    • (2006) Metabolomics , pp. 226-235
    • Enot, D.P.1    Beckmann, M.2    Draper, J.3
  • 65
    • 34247345395 scopus 로고    scopus 로고
    • Comparing the chemical spaces of metabolites and available chemicals
    • models of metabolite-likeness
    • Gupta S, Aires-de-Sousa J. Comparing the chemical spaces of metabolites and available chemicals: models of metabolite-likeness. Mol Divers 2007;11:23-36.
    • (2007) Mol Divers , vol.1 , pp. 23-36
    • Gupta, S.1    Aires-de-Sousa, J.2
  • 66
    • 79955930030 scopus 로고    scopus 로고
    • Ccomparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection
    • Pino Del Carpio D, Basnet RK, De Vos RCH, et al. Ccomparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PloS One 2011;6:e19624.
    • (2011) PloS One , vol.6
    • Pino Del Carpio, D.1    Basnet, R.K.2    De Vos, R.C.H.3
  • 67
    • 33847665648 scopus 로고    scopus 로고
    • Cerebrospinal fluid proteomic biomarkers for Alzheimer-s disease
    • Finehout EJ, Franck Z, Choe LH, et al. Cerebrospinal fluid proteomic biomarkers for Alzheimer-s disease. Ann Neurol 2007;61:120-9.
    • (2007) Ann Neurol , vol.61 , pp. 120-129
    • Finehout, E.J.1    Franck, Z.2    Choe, L.H.3
  • 68
    • 33845997410 scopus 로고    scopus 로고
    • Discrimination of intact mycobacteria at the strain level
    • a combined MALDI-TOF MS and biostatistical analysis
    • Hettick JM, Kashon ML, Slaven JE, et al. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics 2006;6:6416-25.
    • (2006) Proteomics , vol.6 , pp. 6416-6425
    • Hettick, J.M.1    Kashon, M.L.2    Slaven, J.E.3
  • 69
    • 33750611947 scopus 로고    scopus 로고
    • Urinary biomarker profiling in transitional cell carcinoma
    • Munro NP, Cairns DA, Clarke P, et al. Urinary biomarker profiling in transitional cell carcinoma. IntJCancer 2006;119: 2642-50.
    • (2006) Int J Cancer , vol.119 , pp. 2642-2650
    • Munro, N.P.1    Cairns, D.A.2    Clarke, P.3
  • 70
    • 0041421151 scopus 로고    scopus 로고
    • Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro
    • Gunther EC, Stone DJ, Gerwien RW, et al. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci USA 2003;100:9608-13.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 9608-9613
    • Gunther, E.C.1    Stone, D.J.2    Gerwien, R.W.3
  • 71
    • 33745214396 scopus 로고    scopus 로고
    • Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma
    • Guo L, Ma Y, Ward R, et al. Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma. ClinCancer Res 2006;12:3344-54.
    • (2006) Clin Cancer Res , vol.12 , pp. 3344-3354
    • Guo, L.1    Ma, Y.2    Ward, R.3
  • 72
    • 84857710573 scopus 로고    scopus 로고
    • Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and Random Forest classification
    • Nannapaneni P, Hertwig F, Depke M, et al. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and Random Forest classification. Microbiology 2012;158:696-707.
    • (2012) Microbiology , vol.158 , pp. 696-707
    • Nannapaneni, P.1    Hertwig, F.2    Depke, M.3
  • 73
    • 78651445374 scopus 로고    scopus 로고
    • Predicting in vitro drug sensitivity using Random Forests
    • Riddick G, Song H, Ahn S, et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 2011;27: 220-4.
    • (2011) Bioinformatics , vol.27 , pp. 220-224
    • Riddick, G.1    Song, H.2    Ahn, S.3
  • 74
    • 84892438061 scopus 로고    scopus 로고
    • Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis
    • Tsuji S, Midorikawa Y, Takahashi T, et al. Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis. BrJCancer 2011;1-7.
    • (2011) Br J Cancer , pp. 1-7
    • Tsuji, S.1    Midorikawa, Y.2    Takahashi, T.3
  • 75
    • 80053533738 scopus 로고    scopus 로고
    • Microarray-based cancer prediction using single genes
    • Wang X, Simon R. Microarray-based cancer prediction using single genes. BMC Bioinformatics 2011;12:391.
    • (2011) BMC Bioinformatics , vol.12 , pp. 391
    • Wang, X.1    Simon, R.2
  • 76
    • 79951882529 scopus 로고    scopus 로고
    • Prediction of associations between microRNAs and gene expression in glioma biology
    • Wuchty S, Arjona D, Li A, et al. Prediction of associations between microRNAs and gene expression in glioma biology. PloS One 2011;6:e14681.
    • (2011) PloS One , vol.6
    • Wuchty, S.1    Arjona, D.2    Li, A.3
  • 77
    • 70449408309 scopus 로고    scopus 로고
    • Predicting protein-protein binding sites in membrane proteins
    • Bordner AJ. Predicting protein-protein binding sites in membrane proteins. BMC Bioinformatics 2009;10:312.
    • (2009) BMC Bioinformatics , vol.10 , pp. 312
    • Bordner, A.J.1
  • 78
    • 61449249266 scopus 로고    scopus 로고
    • Sequence-based prediction of protein interaction sites with an integrative method
    • Chen X-wen, Jeong JC. Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 2009;25:585-91.
    • (2009) Bioinformatics , vol.25 , pp. 585-591
    • Chen, X.-W.1    Jeong, J.C.2
  • 79
  • 80
    • 60649095847 scopus 로고    scopus 로고
    • Large-scale prediction of long disordered regions in proteins using random forests
    • Han P, Zhang X, Norton RS, etal. Large-scale prediction of long disordered regions in proteins using random forests. BMC Bioinformatics 2009;10:8.
    • (2009) BMC Bioinformatics , vol.10 , pp. 8
    • Han, P.1    Zhang, X.2    Norton, R.S.3
  • 81
    • 77349106468 scopus 로고    scopus 로고
    • Predicting Bevirimat resistance of HIV-1 from genotype
    • Heider D, Verheyen J, Hoffmann D. Predicting Bevirimat resistance of HIV-1 from genotype. BMC Bioinformatics 2010;11:37.
    • (2010) BMC Bioinformatics , vol.11 , pp. 37
    • Heider, D.1    Verheyen, J.2    Hoffmann, D.3
  • 82
    • 77949425833 scopus 로고    scopus 로고
    • Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action
    • Hillenmeyer ME, Ericson E, Davis RW, et al. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 2010;11:R30.
    • (2010) Genome Biol , vol.11
    • Hillenmeyer, M.E.1    Ericson, E.2    Davis, R.W.3
  • 83
    • 83255194562 scopus 로고    scopus 로고
    • Predicting residue-residue contacts using random forest models
    • Li Y, Fang Y, Fang J. Predicting residue-residue contacts using random forest models. Bioinformatics 2011;1-7.
    • (2011) Bioinformatics , vol.1 , pp. 7
    • Li, Y.1    Fang, Y.2    Fang, J.3
  • 84
    • 78651230959 scopus 로고    scopus 로고
    • Predicting disease-associated substitution of a single amino acid by analyzing residue interactions
    • Li Y, Wen Z, Xiao J, et al. Predicting disease-associated substitution of a single amino acid by analyzing residue interactions. BMC Bioinformatics 2011;12:14.
    • (2011) BMC Bioinformatics , vol.12 , pp. 14
    • Li, Y.1    Wen, Z.2    Xiao, J.3
  • 85
    • 13244265581 scopus 로고    scopus 로고
    • Information assessment on predicting protein-protein interactions
    • Lin N, Wu B, Jansen R, et al. Information assessment on predicting protein-protein interactions. BMC Bioinformatics 2004;5:154.
    • (2004) BMC Bioinformatics , vol.5 , pp. 154
    • Lin, N.1    Wu, B.2    Jansen, R.3
  • 86
    • 84857033887 scopus 로고    scopus 로고
    • Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor chematopoietic cell transplantation
    • Marino SR, Lin S, Maiers M, et al. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor chematopoietic cell transplantation. Bone MarrowTransplant 2012;47:217-26.
    • (2012) Bone Marrow Transplant , vol.47 , pp. 217-226
    • Marino, S.R.1    Lin, S.2    Maiers, M.3
  • 87
    • 77951995595 scopus 로고    scopus 로고
    • A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis
    • Medema MH, Zhou M, van Hijum SAFT, etal. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMCGenomics 2010;11:299.
    • (2010) BMC Genomics , vol.11 , pp. 299
    • Medema, M.H.1    Zhou, M.2    van Hijum, S.A.F.T.3
  • 88
    • 33646757492 scopus 로고    scopus 로고
    • On the nature of cavities on protein surfaces
    • application to the identification of drug-binding sites
    • Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 2006;63:892-906.
    • (2006) Proteins , vol.63 , pp. 892-906
    • Nayal, M.1    Honig, B.2
  • 89
    • 62649160355 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins using structural
    • electrostatic and evolutionary features
    • Nimrod G, Szila-gyi A, Leslie C, et al. Identification of DNA-binding proteins using structural, electrostatic and evolutionary features. JMol Biol 2009;387:1040-53.
    • (2009) J Mol Biol , vol.387 , pp. 1040-1053
    • Nimrod, G.1    Szila-gyi, A.2    Leslie, C.3
  • 90
    • 77449103113 scopus 로고    scopus 로고
    • Identification
    • analysis, and prediction of protein ubiquitination sites
    • Radivojac P, Vacic V, Haynes C, et al. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 2010;78:365-80.
    • (2010) Proteins , vol.78 , pp. 365-380
    • Radivojac, P.1    Vacic, V.2    Haynes, C.3
  • 91
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling
    • random forest clustering applied to renal cell carcinoma
    • Shi T, Seligson D, Belldegrun AS, et al. Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 2005;18:547-57.
    • (2005) Mod Pathol , vol.18 , pp. 547-557
    • Shi, T.1    Seligson, D.2    Belldegrun, A.S.3
  • 92
    • 62649092955 scopus 로고    scopus 로고
    • Towards large-scale FAME-based bacterial species identification using machine learning techniques
    • Slabbinck B, De Baets B, Dawyndt P, et al. Towards large-scale FAME-based bacterial species identification using machine learning techniques. Syst Appl Microbiol 2009;32:163-76.
    • (2009) Syst Appl Microbiol , vol.32 , pp. 163-176
    • Slabbinck, B.1    De Baets, B.2    Dawyndt, P.3
  • 93
    • 27444445346 scopus 로고    scopus 로고
    • PostDOCK: a structural, empirical approach to scoring protein ligand ccomplexes
    • Springer C, Adalsteinsson H, Young MM, et al. PostDOCK: a structural, empirical approach to scoring protein ligand ccomplexes. JMedChem 2005;48:6821-31.
    • (2005) J Med Chem , vol.48 , pp. 6821-6831
    • Springer, C.1    Adalsteinsson, H.2    Young, M.M.3
  • 94
    • 60249100029 scopus 로고    scopus 로고
    • Probabilistic classifiers and automated cancer registration
    • an exploratory application
    • Tognazzo S, Emanuela B, Rita FA, et al. Probabilistic classifiers and automated cancer registration: an exploratory application. J Biomed Inform 2009;42:1-10.
    • (2009) J Biomed Inform , vol.42 , pp. 1-10
    • Tognazzo, S.1    Emanuela, B.2    Rita, F.A.3
  • 95
    • 67349191538 scopus 로고    scopus 로고
    • Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine
    • Wang H, Lin C, Yang F, et al. Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine. Comput BiolMed 2009;39:425-32.
    • (2009) Comput Biol Med , vol.39 , pp. 425-432
    • Wang, H.1    Lin, C.2    Yang, F.3
  • 96
    • 51649098333 scopus 로고    scopus 로고
    • Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis
    • Wiseman SM, Melck A, Masoudi H, et al. Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis. Ann Surg Oncol 2008;15:2811-26.
    • (2008) Ann Surg Oncol , vol.15 , pp. 2811-2286
    • Wiseman, S.M.1    Melck, A.2    Masoudi, H.3
  • 97
    • 64749092250 scopus 로고    scopus 로고
    • Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition
    • Zhang G, Li H, Fang B. Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition. Process Biochem 2009; 44:654-60.
    • (2009) Process Biochem , vol.44 , pp. 654-660
    • Zhang, G.1    Li, H.2    Fang, B.3
  • 98
    • 71249153009 scopus 로고    scopus 로고
    • Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects
    • Kim Y, Wojciechowski R, Sung H, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc 2009;3:S64.
    • (2009) BMC Proc , vol.3
    • Kim, Y.1    Wojciechowski, R.2    Sung, H.3
  • 99
    • 33749554766 scopus 로고    scopus 로고
    • Machine learning benchmarks and random forest regression
    • Technical Report, Center for Bioinformatics & Molecular Biostatistics, University of California, San Francisco
    • Segal M. Machine learning benchmarks and random forest regression. Technical Report, Center for Bioinformatics & Molecular Biostatistics, University of California, San Francisco, 2004;1-14.
    • (2004) , pp. 1-14
    • Segal, M.1
  • 100
    • 84861813244 scopus 로고    scopus 로고
    • Random forest Gini importance favours SNPs with large minor allele frequency
    • impact, sources and recommendations
    • Boulesteix A-L, Bender A, Lorenzo Bermejo J, et al. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Brief Bioinform 2012;13:292-304.
    • (2012) Brief Bioinform , vol.13 , pp. 292-304
    • Boulesteix, A-L.1    Bender, A.2    Lorenzo Bermejo, J.3
  • 101
    • 22944453097 scopus 로고    scopus 로고
    • Improving Random Forests
    • In: Boulicaut JF, et al, (ed). Machine Learning: ECML 2004 Proceedings Berlin: Springer
    • Robnik-Sikonja M. Improving Random Forests. In: Boulicaut JF, et al, (ed). Machine Learning: ECML 2004 Proceedings, Vol. 3201. Berlin: Springer, 2004, 359-70.
    • (2004) , vol.3201 , pp. 359-370
    • Robnik-Sikonja, M.1
  • 102
    • 84863447426 scopus 로고    scopus 로고
    • Search for the smallest random forest
    • Zhang H, Wang M. Search for the smallest random forest. Stat Interface 2009;2:381.
    • (2009) Stat Interface , vol.2 , pp. 381
    • Zhang, H.1    Wang, M.2
  • 104
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures
    • illustrations, sources and a solution
    • Strobl C, Boulesteix A-L, Zeileis A, et al. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007;8:25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A-L.2    Zeileis, A.3
  • 105
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests
    • Strobl C, Boulesteix A-L, Kneib T, et al. Conditional variable importance for random forests. BMC Bioinformatics 2008;9:307.
    • (2008) BMC Bioinformatics , vol.9 , pp. 307
    • Strobl, C.1    Boulesteix, A-L.2    Kneib, T.3
  • 107
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: a conditional inference framework
    • Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 2006;15:651-74.
    • (2006) J Comput Graph Stat , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 108
    • 67650770061 scopus 로고    scopus 로고
    • Predictor correlation impacts machine learning algorithms
    • implications for genomic studies
    • Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 2009;25:1884-90.
    • (2009) Bioinformatics , vol.25 , pp. 1884-1890
    • Nicodemus, K.K.1    Malley, J.D.2
  • 109
    • 77949388276 scopus 로고    scopus 로고
    • The behaviour of random forest permutation-based variable importance measures under predictor correlation
    • Nicodemus KK, Malley JD, Strobl C, et al. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 2010;11:110.
    • (2010) BMC Bioinformatics , vol.11 , pp. 110
    • Nicodemus, K.K.1    Malley, J.D.2    Strobl, C.3
  • 110
    • 82255174148 scopus 로고    scopus 로고
    • Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures
    • Nicodemus KK. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 2011;12:369-73.
    • (2011) Brief Bioinform , vol.12 , pp. 369-373
    • Nicodemus, K.K.1
  • 111
    • 77951970995 scopus 로고    scopus 로고
    • Maximal conditional chi-square importance in random forests
    • Wang M, Chen X, Zhang H. Maximal conditional chi-square importance in random forests. Bioinformatics 2010;26:831-7.
    • (2010) Bioinformatics , vol.26 , pp. 831-837
    • Wang, M.1    Chen, X.2    Zhang, H.3
  • 112
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189-232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 113
    • 11244251100 scopus 로고    scopus 로고
    • CARTscans: a tool for visualizing ccomplex models
    • Nason M, Emerson S, LeBlanc M. CARTscans: a tool for visualizing ccomplex models. J Comput Graph Stat 2004;13: 807-25.
    • (2004) J Comput Graph Stat , vol.13 , pp. 807-825
    • Nason, M.1    Emerson, S.2    LeBlanc, M.3
  • 114
    • 78651324347 scopus 로고    scopus 로고
    • The STRING database in 2011: functional interaction networks of proteins
    • globally integrated and scored
    • Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561-8.
    • (2011) Nucleic Acids Res , vol.39
    • Szklarczyk, D.1    Franceschini, A.2    Kuhn, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.