-
2
-
-
0036500993
-
Systems biology
-
a brief overview
-
Kitano H. Systems biology: a brief overview. Science 2002; 295:1662-4.
-
(2002)
Science
, vol.295
, pp. 1662-1664
-
-
Kitano, H.1
-
4
-
-
81355123249
-
Software for systems biology
-
from tools to integrated platforms
-
Ghosh S, Matsuoka Y, Asai Y, et al. Software for systems biology: from tools to integrated platforms. Nat Rev Genet 2011;12:821-32.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 821-832
-
-
Ghosh, S.1
Matsuoka, Y.2
Asai, Y.3
-
6
-
-
33748849648
-
Machine learning in bioinformatics
-
Larranaga P. Machine learning in bioinformatics. Brief Bioinform 2006;7:86-112.
-
(2006)
Brief Bioinform
, vol.7
, pp. 86-112
-
-
Larranaga, P.1
-
7
-
-
77958064179
-
Mining data with random forests
-
a survey and results of new tests
-
Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit 2011;44:330-49.
-
(2011)
Pattern Recognit
, vol.44
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
8
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach Learn 2001;45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
In: Proceedings of the fifth annualworkshop on Computational learning theory -COLT
-
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annualworkshop on Computational learning theory -COLT -92,1992;144-52.
-
(1992)
, vol.92
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. BullMathBiophys 1943;5:115-33.
-
(1943)
Bull Math Biophys
, vol.5
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
12
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408.
-
(1958)
Psychol Rev
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
13
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323: 533-36.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
15
-
-
84937350040
-
Steps toward artificial intelligence
-
Minsky M. Steps toward artificial intelligence. Proc IRE 1961;49:8-30.
-
(1961)
Proc IRE
, vol.49
, pp. 8-30
-
-
Minsky, M.1
-
16
-
-
0001494196
-
Logistic regression analysis of epidemiologic data
-
theory and practice
-
Kleinbaum DG, Kupper LL, Chambless LE. Logistic regression analysis of epidemiologic data: theory and practice. Commun StatTheory 1982;11:485-547.
-
(1982)
Commun Stat Theory
, vol.11
, pp. 485-547
-
-
Kleinbaum, D.G.1
Kupper, L.L.2
Chambless, L.E.3
-
17
-
-
22944478488
-
Discriminatory analysis-nonparametric discrimination
-
consistency properties
-
Fixt E, Hodges JL. Discriminatory analysis-nonparametric discrimination: consistency properties. Int Stat Rev 1989;57: 238-47.
-
(1989)
Int Stat Rev
, vol.57
, pp. 238-247
-
-
Fixt, E.1
Hodges, J.L.2
-
18
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fischer RA. The use of multiple measurements in taxonomic problems. AnnHum Genet 1936;7:179-88.
-
(1936)
Ann Hum Genet
, vol.7
, pp. 179-188
-
-
Fischer, R.A.1
-
19
-
-
84887916087
-
Regularized discriminant analysis
-
Friedman JH. Regularized discriminant analysis. J Am Stat Assoc 1989;84:165-75.
-
(1989)
J Am Stat Assoc
, vol.84
, pp. 165-175
-
-
Friedman, J.H.1
-
21
-
-
4143073317
-
Classification and regression trees
-
TheWadsworth Statistics Probability Series
-
Breiman L, Friedman JH, Olshen RA, et al. Classification and regression trees. TheWadsworth Statistics Probability Series 1984;19:368.
-
(1984)
, vol.19
, pp. 368
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
-
22
-
-
84863165439
-
TheElements ofStatistical Learning
-
2nd edn. New York Springer-Verlag
-
Hastie T, Tibshirani R, Friedman J. TheElements ofStatistical Learning: Data Mining, Inference, and Prediction. 2nd edn. New York: Springer-Verlag, 2009.
-
(2009)
Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
24
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008;9:319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
25
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
DyÝaz-Uriarte R, Alvarez de Andre's S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006;7:3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Dý'az-Uriarte, R.1
Alvarez de Andre's, S.2
-
26
-
-
34547596338
-
MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features
-
Jiang P, Wu H, Wang W, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 2007;35:W339-44.
-
(2007)
Nucleic Acids Res
, vol.35
-
-
Jiang, P.1
Wu, H.2
Wang, W.3
-
27
-
-
33747841010
-
Pathway analysis using random forests classification and regression
-
Pang H, Lin A, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics 2006;22:2028-36.
-
(2006)
Bioinformatics
, vol.22
, pp. 2028-2036
-
-
Pang, H.1
Lin, A.2
Holford, M.3
-
28
-
-
19544392545
-
Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information
-
Bao L, Cui Y. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 2005;21:2185-90.
-
(2005)
Bioinformatics
, vol.21
, pp. 2185-2190
-
-
Bao, L.1
Cui, Y.2
-
29
-
-
84892441986
-
Evaluation of different biological data and computational classification methods for use in protein interaction
-
Qi Y, Bar-Joseph Z, Klein-seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction. Bioinformatics 2006; 500:490-500.
-
(2006)
Bioinformatics
, vol.500
, pp. 490-500
-
-
Qi, Y.1
Bar-Joseph, Z.2
Klein-seetharaman, J.3
-
30
-
-
0003787146
-
Rand Corporation Dynamic Programming
-
Princeton: Princeton University Press
-
Bellman RE. RandCorporation Dynamic Programming. Princeton: Princeton University Press, 1957;342.
-
(1957)
, pp. 342
-
-
Bellman, R.E.1
-
31
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
-
Somorjai RL, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003;19:1484-91.
-
(2003)
Bioinformatics
, vol.19
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
32
-
-
12744259874
-
Identifying SNPs predictive of phenotype using random forests
-
Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 2005;28:171-82.
-
(2005)
Genet Epidemiol
, vol.28
, pp. 171-182
-
-
Bureau, A.1
Dupuis, J.2
Falls, K.3
-
33
-
-
80053283605
-
A comparison of methods for classifying clinical samples based on proteomics data
-
a case study for statistical and machine learning approaches
-
Sampson DL, Parker TJ, Upton Z, et al. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches. PLoS One 2011;6:e24973.
-
(2011)
PLoS One
, vol.6
-
-
Sampson, D.L.1
Parker, T.J.2
Upton, Z.3
-
34
-
-
77949497074
-
Bioinformatics challenges for genome-wide association studies
-
Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010;26:445-55.
-
(2010)
Bioinformatics
, vol.26
, pp. 445-455
-
-
Moore, J.H.1
Asselbergs, F.W.2
Williams, S.M.3
-
35
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
-
36
-
-
59849093889
-
Prediction of high-responding peptides for targeted protein assays by mass spectrometry
-
Fusaro VA, Mani DR, Mesirov JP, et al. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 2009;27:190-8.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 190-198
-
-
Fusaro, V.A.1
Mani, D.R.2
Mesirov, J.P.3
-
37
-
-
0036463681
-
Metabonomics: a platform for studying drug toxicity and gene function
-
Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studying drug toxicity and gene function. Nat RevDrugDiscov 2002;1:153-61.
-
(2002)
Nat Rev Drug Discov
, vol.1
, pp. 153-161
-
-
Nicholson, J.K.1
Connelly, J.2
Lindon, J.C.3
-
38
-
-
9144261138
-
Mining the structural genomics pipelin
-
identification of protein properties that affect high-throughput experimental analysis
-
Goh C-S, Lan N, Douglas SM, et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol 2004;336:115-30.
-
(2004)
J Mol Biol
, vol.336
, pp. 115-130
-
-
Goh, C-S.1
Lan, N.2
Douglas, S.M.3
-
39
-
-
84861730860
-
Random forests for genomic data analysis
-
Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012;99:323-9.
-
(2012)
Genomics
, vol.99
, pp. 323-329
-
-
Chen, X.1
Ishwaran, H.2
-
41
-
-
0041382385
-
Random Forests
-
Breiman L, Cutler A. Random Forests. http://www.stat .berkeley.edu/breiman/RandomForests/.
-
-
-
Breiman, L.1
Cutler, A.2
-
42
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. JRoy Stat Soc BMet 1974;36:111-47.
-
(1974)
J Roy Stat Soc B Met
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
43
-
-
84860543260
-
PhenoLink - a web-tool for linking phenotype toomics data for bacteria
-
application to gene-trait matching for Lactobacillus plantarum strains
-
Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, van Hijum SAFT. PhenoLink - a web-tool for linking phenotype toomics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains. BMC Genomics 2012;13:170.
-
(2012)
BMC Genomics
, vol.13
, pp. 170
-
-
Bayjanov, J.R.1
Molenaar, D.2
Tzeneva, V.3
Siezen, R.J.4
van Hijum, S.A.F.T.5
-
44
-
-
0345040873
-
Classification and regression by randomForest
-
Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2:18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
45
-
-
78651457534
-
R Development Core Team
-
R. ALanguage and Environment for Statistical Computing
-
R Development Core Team. R. ALanguage and Environment for Statistical Computing 2012.
-
(2012)
-
-
-
46
-
-
77954485448
-
On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data
-
Schwarz DF, Ko-nig IR, Ziegler A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 2010;26:1752-8.
-
(2010)
Bioinformatics
, vol.26
, pp. 1752-1758
-
-
Schwarz, D.F.1
Ko-nig, I.R.2
Ziegler, A.3
-
47
-
-
65849256988
-
Willows: a memory efficient tree and forest construction package
-
Zhang H, Wang M, Chen X. Willows: a memory efficient tree and forest construction package. BMC Bioinformatics 2009;10:130.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 130
-
-
Zhang, H.1
Wang, M.2
Chen, X.3
-
48
-
-
7244250182
-
Data mining in bioinformatics using Weka
-
Frank E, Hall M, Trigg L, et al. Data mining in bioinformatics using Weka. Bioinformatics 2004;20:2479-81.
-
(2004)
Bioinformatics
, vol.20
, pp. 2479-2481
-
-
Frank, E.1
Hall, M.2
Trigg, L.3
-
49
-
-
19944432091
-
A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation
-
Alvarez S, Diaz-Uriarte R, Osorio A, etal. A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 2005;11:1146-53.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 1146-1153
-
-
Alvarez, S.1
Diaz-Uriarte, R.2
Osorio, A.3
-
50
-
-
77957883915
-
Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12,566 individuals
-
Briggs FBS, Bartlett SE, Goldstein BA, et al. Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12,566 individuals. HumMol Genet 2010;19:4286-95.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4286-4295
-
-
Briggs, F.B.S.1
Bartlett, S.E.2
Goldstein, B.A.3
-
52
-
-
80052880887
-
Methods for identifying snp interactions: a review on variations of logic regression
-
random forest and bayesian logistic regression
-
Chen CCM, Schwender H, Keith J, etal. Methods for identifying snp interactions: a review on variations of logic regression, random forest and bayesian logistic regression. IEEE/ACM Trans Comput Biol Bioinf 2011;8: 1580-91.
-
(2011)
IEEE/ACM Trans Comput Biol Bioinf
, vol.8
, pp. 1580-1591
-
-
Chen, C.C.M.1
Schwender, H.2
Keith, J.3
-
53
-
-
58249128191
-
Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome
-
Christensen BC, Houseman EA, Godleski JJ, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 2009;69:227-34.
-
(2009)
Cancer Res
, vol.69
, pp. 227-234
-
-
Christensen, B.C.1
Houseman, E.A.2
Godleski, J.J.3
-
54
-
-
77957157531
-
A screening methodology based on Random Forests to improve the detection of gene-gene interactions
-
De Lobel L, Geurts P, Baele G, et al. A screening methodology based on Random Forests to improve the detection of gene-gene interactions. Eur J Hum Genet, 2010;18: 1127-32.
-
(2010)
Eur J Hum Genet
, vol.18
, pp. 1127-32
-
-
De Lobel, L.1
Geurts, P.2
Baele, G.3
-
55
-
-
79960135846
-
FACIL: fast and accurate genetic code inference and logo
-
Dutilh BE, Jurgelenaite R, Szklarczyk R, et al. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 2011;27:1929-33.
-
(2011)
Bioinformatics
, vol.27
, pp. 1929-1933
-
-
Dutilh, B.E.1
Jurgelenaite, R.2
Szklarczyk, R.3
-
56
-
-
25444453244
-
Screening large-scale association study data: exploiting interactions using random forests
-
Lunetta KL, Hayward LB, Segal J, etal. Screening large-scale association study data: exploiting interactions using random forests. BMCGenet 2004;5:32.
-
(2004)
BMC Genet
, vol.5
, pp. 32
-
-
Lunetta, K.L.1
Hayward, L.B.2
Segal, J.3
-
57
-
-
79959731274
-
Feature importance analysis in guide strand identification of microRNAs
-
Ma D, Xiao J, Li Y, et al. Feature importance analysis in guide strand identification of microRNAs. Comput Biol Chem 2011;35:131-6.
-
(2011)
Comput Biol Chem
, vol.35
, pp. 131-136
-
-
Ma, D.1
Xiao, J.2
Li, Y.3
-
58
-
-
77956288094
-
Identification of genetic loci in Lactobacillusplantarum that modulate the immune response of dendritic cells using ccomparative genome hybridization
-
Meijerink M, van chemert S, Taverne N, et al. Identification of genetic loci in Lactobacillusplantarum that modulate the immune response of dendritic cells using ccomparative genome hybridization. PloS One 2010;5:e10632.
-
(2010)
PloS One
, vol.5
-
-
Meijerink, M.1
van chemert, S.2
Taverne, N.3
-
59
-
-
79954623588
-
Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions
-
Ro-delsperger C, Guo G, Kolanczyk M, et al. Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions. Nucleic Acids Res 2011;39:2492-502.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 2492-502
-
-
Ro-delsperger, C.1
Guo, G.2
Kolanczyk, M.3
-
60
-
-
79955984463
-
Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest
-
Roshan U, Chikkagoudar S, Wei Z, et al. Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest. Nucleic Acids Res 2011;39:e62.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Roshan, U.1
Chikkagoudar, S.2
Wei, Z.3
-
61
-
-
38349173162
-
Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma
-
Tsou JA, Galler JS, Siegmund KD, et al. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer 2007;6:70.
-
(2007)
Mol Cancer
, vol.6
, pp. 70
-
-
Tsou, J.A.1
Galler, J.S.2
Siegmund, K.D.3
-
62
-
-
78149495201
-
Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells
-
van chemert S, Meijerink M, Molenaar D, et al. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMCMicrobiol 2010;10:293.
-
(2010)
BMC Microbiol
, vol.10
, pp. 293
-
-
van chemert, S.1
Meijerink, M.2
Molenaar, D.3
-
63
-
-
77649254869
-
Resistance profile of etravirine
-
combined analysis of baseline genotypic and phenotypic data from the randomized, ccontrolled Phase III clinical studies
-
Vingerhoets J, Tambuyzer L, Azijn H, et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, ccontrolled Phase III clinical studies. AIDS 2010;24:503-14.
-
(2010)
AIDS
, vol.24
, pp. 503-514
-
-
Vingerhoets, J.1
Tambuyzer, L.2
Azijn, H.3
-
64
-
-
33750294092
-
On the interpretation of high throughput MS based metabolomics fingerprints with random forest
-
Enot DP, Beckmann M, Draper J. On the interpretation of high throughput MS based metabolomics fingerprints with random forest. Metabolomics 2006;226-35..
-
(2006)
Metabolomics
, pp. 226-235
-
-
Enot, D.P.1
Beckmann, M.2
Draper, J.3
-
65
-
-
34247345395
-
Comparing the chemical spaces of metabolites and available chemicals
-
models of metabolite-likeness
-
Gupta S, Aires-de-Sousa J. Comparing the chemical spaces of metabolites and available chemicals: models of metabolite-likeness. Mol Divers 2007;11:23-36.
-
(2007)
Mol Divers
, vol.1
, pp. 23-36
-
-
Gupta, S.1
Aires-de-Sousa, J.2
-
66
-
-
79955930030
-
Ccomparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection
-
Pino Del Carpio D, Basnet RK, De Vos RCH, et al. Ccomparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PloS One 2011;6:e19624.
-
(2011)
PloS One
, vol.6
-
-
Pino Del Carpio, D.1
Basnet, R.K.2
De Vos, R.C.H.3
-
67
-
-
33847665648
-
Cerebrospinal fluid proteomic biomarkers for Alzheimer-s disease
-
Finehout EJ, Franck Z, Choe LH, et al. Cerebrospinal fluid proteomic biomarkers for Alzheimer-s disease. Ann Neurol 2007;61:120-9.
-
(2007)
Ann Neurol
, vol.61
, pp. 120-129
-
-
Finehout, E.J.1
Franck, Z.2
Choe, L.H.3
-
68
-
-
33845997410
-
Discrimination of intact mycobacteria at the strain level
-
a combined MALDI-TOF MS and biostatistical analysis
-
Hettick JM, Kashon ML, Slaven JE, et al. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics 2006;6:6416-25.
-
(2006)
Proteomics
, vol.6
, pp. 6416-6425
-
-
Hettick, J.M.1
Kashon, M.L.2
Slaven, J.E.3
-
69
-
-
33750611947
-
Urinary biomarker profiling in transitional cell carcinoma
-
Munro NP, Cairns DA, Clarke P, et al. Urinary biomarker profiling in transitional cell carcinoma. IntJCancer 2006;119: 2642-50.
-
(2006)
Int J Cancer
, vol.119
, pp. 2642-2650
-
-
Munro, N.P.1
Cairns, D.A.2
Clarke, P.3
-
70
-
-
0041421151
-
Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro
-
Gunther EC, Stone DJ, Gerwien RW, et al. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci USA 2003;100:9608-13.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 9608-9613
-
-
Gunther, E.C.1
Stone, D.J.2
Gerwien, R.W.3
-
71
-
-
33745214396
-
Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma
-
Guo L, Ma Y, Ward R, et al. Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma. ClinCancer Res 2006;12:3344-54.
-
(2006)
Clin Cancer Res
, vol.12
, pp. 3344-3354
-
-
Guo, L.1
Ma, Y.2
Ward, R.3
-
72
-
-
84857710573
-
Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and Random Forest classification
-
Nannapaneni P, Hertwig F, Depke M, et al. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and Random Forest classification. Microbiology 2012;158:696-707.
-
(2012)
Microbiology
, vol.158
, pp. 696-707
-
-
Nannapaneni, P.1
Hertwig, F.2
Depke, M.3
-
73
-
-
78651445374
-
Predicting in vitro drug sensitivity using Random Forests
-
Riddick G, Song H, Ahn S, et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 2011;27: 220-4.
-
(2011)
Bioinformatics
, vol.27
, pp. 220-224
-
-
Riddick, G.1
Song, H.2
Ahn, S.3
-
74
-
-
84892438061
-
Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis
-
Tsuji S, Midorikawa Y, Takahashi T, et al. Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis. BrJCancer 2011;1-7.
-
(2011)
Br J Cancer
, pp. 1-7
-
-
Tsuji, S.1
Midorikawa, Y.2
Takahashi, T.3
-
75
-
-
80053533738
-
Microarray-based cancer prediction using single genes
-
Wang X, Simon R. Microarray-based cancer prediction using single genes. BMC Bioinformatics 2011;12:391.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 391
-
-
Wang, X.1
Simon, R.2
-
76
-
-
79951882529
-
Prediction of associations between microRNAs and gene expression in glioma biology
-
Wuchty S, Arjona D, Li A, et al. Prediction of associations between microRNAs and gene expression in glioma biology. PloS One 2011;6:e14681.
-
(2011)
PloS One
, vol.6
-
-
Wuchty, S.1
Arjona, D.2
Li, A.3
-
77
-
-
70449408309
-
Predicting protein-protein binding sites in membrane proteins
-
Bordner AJ. Predicting protein-protein binding sites in membrane proteins. BMC Bioinformatics 2009;10:312.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 312
-
-
Bordner, A.J.1
-
78
-
-
61449249266
-
Sequence-based prediction of protein interaction sites with an integrative method
-
Chen X-wen, Jeong JC. Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 2009;25:585-91.
-
(2009)
Bioinformatics
, vol.25
, pp. 585-591
-
-
Chen, X.-W.1
Jeong, J.C.2
-
80
-
-
60649095847
-
Large-scale prediction of long disordered regions in proteins using random forests
-
Han P, Zhang X, Norton RS, etal. Large-scale prediction of long disordered regions in proteins using random forests. BMC Bioinformatics 2009;10:8.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 8
-
-
Han, P.1
Zhang, X.2
Norton, R.S.3
-
82
-
-
77949425833
-
Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action
-
Hillenmeyer ME, Ericson E, Davis RW, et al. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 2010;11:R30.
-
(2010)
Genome Biol
, vol.11
-
-
Hillenmeyer, M.E.1
Ericson, E.2
Davis, R.W.3
-
83
-
-
83255194562
-
Predicting residue-residue contacts using random forest models
-
Li Y, Fang Y, Fang J. Predicting residue-residue contacts using random forest models. Bioinformatics 2011;1-7.
-
(2011)
Bioinformatics
, vol.1
, pp. 7
-
-
Li, Y.1
Fang, Y.2
Fang, J.3
-
84
-
-
78651230959
-
Predicting disease-associated substitution of a single amino acid by analyzing residue interactions
-
Li Y, Wen Z, Xiao J, et al. Predicting disease-associated substitution of a single amino acid by analyzing residue interactions. BMC Bioinformatics 2011;12:14.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 14
-
-
Li, Y.1
Wen, Z.2
Xiao, J.3
-
85
-
-
13244265581
-
Information assessment on predicting protein-protein interactions
-
Lin N, Wu B, Jansen R, et al. Information assessment on predicting protein-protein interactions. BMC Bioinformatics 2004;5:154.
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 154
-
-
Lin, N.1
Wu, B.2
Jansen, R.3
-
86
-
-
84857033887
-
Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor chematopoietic cell transplantation
-
Marino SR, Lin S, Maiers M, et al. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor chematopoietic cell transplantation. Bone MarrowTransplant 2012;47:217-26.
-
(2012)
Bone Marrow Transplant
, vol.47
, pp. 217-226
-
-
Marino, S.R.1
Lin, S.2
Maiers, M.3
-
87
-
-
77951995595
-
A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis
-
Medema MH, Zhou M, van Hijum SAFT, etal. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMCGenomics 2010;11:299.
-
(2010)
BMC Genomics
, vol.11
, pp. 299
-
-
Medema, M.H.1
Zhou, M.2
van Hijum, S.A.F.T.3
-
88
-
-
33646757492
-
On the nature of cavities on protein surfaces
-
application to the identification of drug-binding sites
-
Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 2006;63:892-906.
-
(2006)
Proteins
, vol.63
, pp. 892-906
-
-
Nayal, M.1
Honig, B.2
-
89
-
-
62649160355
-
Identification of DNA-binding proteins using structural
-
electrostatic and evolutionary features
-
Nimrod G, Szila-gyi A, Leslie C, et al. Identification of DNA-binding proteins using structural, electrostatic and evolutionary features. JMol Biol 2009;387:1040-53.
-
(2009)
J Mol Biol
, vol.387
, pp. 1040-1053
-
-
Nimrod, G.1
Szila-gyi, A.2
Leslie, C.3
-
90
-
-
77449103113
-
Identification
-
analysis, and prediction of protein ubiquitination sites
-
Radivojac P, Vacic V, Haynes C, et al. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 2010;78:365-80.
-
(2010)
Proteins
, vol.78
, pp. 365-380
-
-
Radivojac, P.1
Vacic, V.2
Haynes, C.3
-
91
-
-
16444381830
-
Tumor classification by tissue microarray profiling
-
random forest clustering applied to renal cell carcinoma
-
Shi T, Seligson D, Belldegrun AS, et al. Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 2005;18:547-57.
-
(2005)
Mod Pathol
, vol.18
, pp. 547-557
-
-
Shi, T.1
Seligson, D.2
Belldegrun, A.S.3
-
92
-
-
62649092955
-
Towards large-scale FAME-based bacterial species identification using machine learning techniques
-
Slabbinck B, De Baets B, Dawyndt P, et al. Towards large-scale FAME-based bacterial species identification using machine learning techniques. Syst Appl Microbiol 2009;32:163-76.
-
(2009)
Syst Appl Microbiol
, vol.32
, pp. 163-176
-
-
Slabbinck, B.1
De Baets, B.2
Dawyndt, P.3
-
93
-
-
27444445346
-
PostDOCK: a structural, empirical approach to scoring protein ligand ccomplexes
-
Springer C, Adalsteinsson H, Young MM, et al. PostDOCK: a structural, empirical approach to scoring protein ligand ccomplexes. JMedChem 2005;48:6821-31.
-
(2005)
J Med Chem
, vol.48
, pp. 6821-6831
-
-
Springer, C.1
Adalsteinsson, H.2
Young, M.M.3
-
94
-
-
60249100029
-
Probabilistic classifiers and automated cancer registration
-
an exploratory application
-
Tognazzo S, Emanuela B, Rita FA, et al. Probabilistic classifiers and automated cancer registration: an exploratory application. J Biomed Inform 2009;42:1-10.
-
(2009)
J Biomed Inform
, vol.42
, pp. 1-10
-
-
Tognazzo, S.1
Emanuela, B.2
Rita, F.A.3
-
95
-
-
67349191538
-
Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine
-
Wang H, Lin C, Yang F, et al. Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine. Comput BiolMed 2009;39:425-32.
-
(2009)
Comput Biol Med
, vol.39
, pp. 425-432
-
-
Wang, H.1
Lin, C.2
Yang, F.3
-
96
-
-
51649098333
-
Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis
-
Wiseman SM, Melck A, Masoudi H, et al. Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis. Ann Surg Oncol 2008;15:2811-26.
-
(2008)
Ann Surg Oncol
, vol.15
, pp. 2811-2286
-
-
Wiseman, S.M.1
Melck, A.2
Masoudi, H.3
-
97
-
-
64749092250
-
Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition
-
Zhang G, Li H, Fang B. Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition. Process Biochem 2009; 44:654-60.
-
(2009)
Process Biochem
, vol.44
, pp. 654-660
-
-
Zhang, G.1
Li, H.2
Fang, B.3
-
98
-
-
71249153009
-
Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects
-
Kim Y, Wojciechowski R, Sung H, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc 2009;3:S64.
-
(2009)
BMC Proc
, vol.3
-
-
Kim, Y.1
Wojciechowski, R.2
Sung, H.3
-
99
-
-
33749554766
-
Machine learning benchmarks and random forest regression
-
Technical Report, Center for Bioinformatics & Molecular Biostatistics, University of California, San Francisco
-
Segal M. Machine learning benchmarks and random forest regression. Technical Report, Center for Bioinformatics & Molecular Biostatistics, University of California, San Francisco, 2004;1-14.
-
(2004)
, pp. 1-14
-
-
Segal, M.1
-
100
-
-
84861813244
-
Random forest Gini importance favours SNPs with large minor allele frequency
-
impact, sources and recommendations
-
Boulesteix A-L, Bender A, Lorenzo Bermejo J, et al. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Brief Bioinform 2012;13:292-304.
-
(2012)
Brief Bioinform
, vol.13
, pp. 292-304
-
-
Boulesteix, A-L.1
Bender, A.2
Lorenzo Bermejo, J.3
-
101
-
-
22944453097
-
Improving Random Forests
-
In: Boulicaut JF, et al, (ed). Machine Learning: ECML 2004 Proceedings Berlin: Springer
-
Robnik-Sikonja M. Improving Random Forests. In: Boulicaut JF, et al, (ed). Machine Learning: ECML 2004 Proceedings, Vol. 3201. Berlin: Springer, 2004, 359-70.
-
(2004)
, vol.3201
, pp. 359-370
-
-
Robnik-Sikonja, M.1
-
102
-
-
84863447426
-
Search for the smallest random forest
-
Zhang H, Wang M. Search for the smallest random forest. Stat Interface 2009;2:381.
-
(2009)
Stat Interface
, vol.2
, pp. 381
-
-
Zhang, H.1
Wang, M.2
-
104
-
-
33847096395
-
Bias in random forest variable importance measures
-
illustrations, sources and a solution
-
Strobl C, Boulesteix A-L, Zeileis A, et al. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007;8:25.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A-L.2
Zeileis, A.3
-
107
-
-
33749677657
-
Unbiased recursive partitioning: a conditional inference framework
-
Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 2006;15:651-74.
-
(2006)
J Comput Graph Stat
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
108
-
-
67650770061
-
Predictor correlation impacts machine learning algorithms
-
implications for genomic studies
-
Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 2009;25:1884-90.
-
(2009)
Bioinformatics
, vol.25
, pp. 1884-1890
-
-
Nicodemus, K.K.1
Malley, J.D.2
-
109
-
-
77949388276
-
The behaviour of random forest permutation-based variable importance measures under predictor correlation
-
Nicodemus KK, Malley JD, Strobl C, et al. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 2010;11:110.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 110
-
-
Nicodemus, K.K.1
Malley, J.D.2
Strobl, C.3
-
110
-
-
82255174148
-
Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures
-
Nicodemus KK. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 2011;12:369-73.
-
(2011)
Brief Bioinform
, vol.12
, pp. 369-373
-
-
Nicodemus, K.K.1
-
111
-
-
77951970995
-
Maximal conditional chi-square importance in random forests
-
Wang M, Chen X, Zhang H. Maximal conditional chi-square importance in random forests. Bioinformatics 2010;26:831-7.
-
(2010)
Bioinformatics
, vol.26
, pp. 831-837
-
-
Wang, M.1
Chen, X.2
Zhang, H.3
-
112
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189-232.
-
(2001)
Ann Stat
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
113
-
-
11244251100
-
CARTscans: a tool for visualizing ccomplex models
-
Nason M, Emerson S, LeBlanc M. CARTscans: a tool for visualizing ccomplex models. J Comput Graph Stat 2004;13: 807-25.
-
(2004)
J Comput Graph Stat
, vol.13
, pp. 807-825
-
-
Nason, M.1
Emerson, S.2
LeBlanc, M.3
-
114
-
-
78651324347
-
The STRING database in 2011: functional interaction networks of proteins
-
globally integrated and scored
-
Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561-8.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Szklarczyk, D.1
Franceschini, A.2
Kuhn, M.3
|