-
2
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
3
-
-
0032594959
-
An overview of statistical learning theory
-
Sep
-
V. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
-
4
-
-
73949154686
-
OP-ELM: Optimally pruned extreme learning machine
-
Jan.
-
Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, "OP-ELM: Optimally pruned extreme learning machine," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 158-162, Jan. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
5
-
-
78149294352
-
Clifford support vector machines for classification, regression, and recurrence
-
Nov.
-
E. J. Bayro-Corrochano and N. Arana-Daniel, "Clifford support vector machines for classification, regression, and recurrence," IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1731-1746, Nov. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.11
, pp. 1731-1746
-
-
Bayro-Corrochano, E.J.1
Arana-Daniel, N.2
-
6
-
-
84862192949
-
Domain adaptation from multiple sources: A domain-dependent regularization approach
-
Mar.
-
L. Duan, D. Xu, and I. W. H. Tsang, "Domain adaptation from multiple sources: A domain-dependent regularization approach," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 504-518, Mar. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst
, vol.23
, Issue.3
, pp. 504-518
-
-
Duan, L.1
Xu, D.2
Tsang, I.W.H.3
-
7
-
-
79957992972
-
Feature selection using probabilistic prediction of support vector regression
-
Jun.
-
J. B. Yang and C. J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Netw., vol. 22, no. 6, pp. 954-962, Jun. 2011.
-
(2011)
IEEE Trans. Neural Netw
, vol.22
, Issue.6
, pp. 954-962
-
-
Yang, J.B.1
Ong, C.J.2
-
8
-
-
84875884987
-
Simple proof of convergence of the SMO algorithm for different SVM variants
-
Jul.
-
J. Lopez and J. R. Dorronsoro, "Simple proof of convergence of the SMO algorithm for different SVM variants," IEEE Trans. Neural Netw., vol. 23, no. 7, pp. 1142-1147, Jul. 2012.
-
(2012)
IEEE Trans. Neural Netw
, vol.23
, Issue.7
, pp. 1142-1147
-
-
Lopez, J.1
Dorronsoro, J.R.2
-
9
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Cambridge, MA: MIT Press
-
V. Vapnik, S. E. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1996, pp. 281-287.
-
(1996)
Advances in Neural Information Processing Systems 9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
10
-
-
84899013173
-
Support vector regression machines
-
Cambridge, MA: MIT Press
-
H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support vector regression machines," in Advances in Neural Information Processing Systems, vol. 9. Cambridge, MA: MIT Press, 1997, pp. 155-161.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.J.4
Vapnik, V.5
-
11
-
-
4043137356
-
A tutorial on support vector regression
-
A. J. Smola and B. Scholkopf, "A tutorial on support vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, 2004.
-
(2004)
Stat. Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
12
-
-
0042591514
-
Support vector fuzzy regression machines
-
D. H. Hong and C. Hwang, "Support vector fuzzy regression machines," Fuzzy Sets Syst., vol. 138, no. 2, pp. 271-281, 2003.
-
(2003)
Fuzzy Sets Syst
, vol.138
, Issue.2
, pp. 271-281
-
-
Hong, D.H.1
Hwang, C.2
-
13
-
-
33744967706
-
Robust classification and regression using support vector machines
-
Jul
-
T. B. Trafalis and R. C. Gilbert, "Robust classification and regression using support vector machines," Eur. J. Oper. Res., vol. 173, no. 3, pp. 893-909, Jul. 2006.
-
(2006)
Eur. J. Oper. Res
, vol.173
, Issue.3
, pp. 893-909
-
-
Trafalis, T.B.1
Gilbert, R.C.2
-
14
-
-
33847156385
-
Support vector regression with noisy data: A second order cone programming approach
-
Apr
-
T. B. Trafalis and S. A. Alwazzi, "Support vector regression with noisy data: A second order cone programming approach," Int. J. General Syst., vol. 36, no. 2, pp. 237-250, Apr. 2007.
-
(2007)
Int. J. General Syst
, vol.36
, Issue.2
, pp. 237-250
-
-
Trafalis, T.B.1
Alwazzi, S.A.2
-
15
-
-
33745800909
-
Second order cone programming approaches for handling missing and uncertain data
-
Dec
-
P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola, "Second order cone programming approaches for handling missing and uncertain data," J. Mach. Learn. Res., vol. 7, pp. 1283-1314, Dec. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1283-1314
-
-
Shivaswamy, P.K.1
Bhattacharyya, C.2
Smola, A.J.3
-
16
-
-
84876900884
-
Support vector regression for imprecise data
-
E. Carrizosa, J. E. Gordillo, and F. Plastria, "Support vector regression for imprecise data," Dept. MOSI, Vrije Univ. Brussel, Belgium, Tech. Rep., 2007.
-
(2007)
Dept. MOSI, Vrije Univ. Brussel, Belgium, Tech. Rep
-
-
Carrizosa, E.1
Gordillo, J.E.2
Plastria, F.3
-
17
-
-
0036856978
-
Robust support vector regression networks for function approximation with outliers
-
Nov
-
C. Chuang, S. Su, J. Jeng, and C. Hsiao, "Robust support vector regression networks for function approximation with outliers," IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1322-1330, Nov. 2002.
-
(2002)
IEEE Trans. Neural Netw
, vol.13
, Issue.6
, pp. 1322-1330
-
-
Chuang, C.1
Su, S.2
Jeng, J.3
Hsiao, C.4
-
18
-
-
33746606930
-
Robust support vector regression for biophysical variable estimation from remotely sensed images
-
Jul
-
G. Camps-Valls, L. Bruzzone, J. Rojo-Álvarez, and F. Melgani, "Robust support vector regression for biophysical variable estimation from remotely sensed images," IEEE, Geosci. Remote Sensing Lett., vol. 3, no. 3, pp. 339-343, Jul. 2006.
-
(2006)
IEEE Geosci. Remote Sensing Lett
, vol.3
, Issue.3
, pp. 339-343
-
-
Camps-Valls, G.1
Bruzzone, L.2
Rojo-Álvarez, J.3
Melgani, F.4
-
19
-
-
33745779142
-
A second order cone programming formulation for classifying missing data
-
Cambridge, MA: MIT Press
-
C. Bhattacharyya, K. Pannagadatta, and A. Smola, "A second order cone programming formulation for classifying missing data," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
-
-
Bhattacharyya, C.1
Pannagadatta, K.2
Smola, A.3
-
20
-
-
84876933544
-
Kernel support vector regression with imprecise output
-
E. Carrizosa, J. E. Gordillo, and F. Plastria, "Kernel support vector regression with imprecise output," Dept. MOSI, Vrije Univ. Brussel, Brussel, Belgium, Tech. Rep., 2008.
-
(2008)
Dept. MOSI, Vrije Univ. Brussel, Brussel, Belgium, Tech. Rep
-
-
Carrizosa, E.1
Gordillo, J.E.2
Plastria, F.3
-
21
-
-
0041589566
-
Support vector interval regression networks for interval regression analysis
-
J. Jeng, C. Chuang, and S. Su, "Support vector interval regression networks for interval regression analysis," Fuzzy Sets Syst., vol. 138, no. 2, pp. 283-300, 2003.
-
(2003)
Fuzzy Sets Syst
, vol.138
, Issue.2
, pp. 283-300
-
-
Jeng, J.1
Chuang, C.2
Su, S.3
-
22
-
-
33644972832
-
Support vector interval regression machine for crisp input and output data
-
C. Hwang, D. Hong, and K. H. Seok, "Support vector interval regression machine for crisp input and output data," Fuzzy Sets Syst., vol. 157, no. 8, pp. 1114-1125, 2006.
-
(2006)
Fuzzy Sets Syst
, vol.157
, Issue.8
, pp. 1114-1125
-
-
Hwang, C.1
Hong, D.2
Seok, K.H.3
-
23
-
-
3042773329
-
Extended fuzzy regression models using regularization method
-
Aug
-
D. H. Hong and C. Hwang, "Extended fuzzy regression models using regularization method," Inf. Sci., vol. 164, nos. 1-4, pp. 31-36, Aug. 2004.
-
(2004)
Inf. Sci
, vol.164
, Issue.1-4
, pp. 31-36
-
-
Hong, D.H.1
Hwang, C.2
-
24
-
-
4644290661
-
Training algorithms for fuzzy support vector machines with noisy data
-
Oct
-
C.-F. Lin and S.-D. Wang, "Training algorithms for fuzzy support vector machines with noisy data," Pattern Recognit. Lett., vol. 25, no. 14, pp. 1647-1656, Oct. 2004.
-
(2004)
Pattern Recognit. Lett
, vol.25
, Issue.14
, pp. 1647-1656
-
-
Lin, C.-F.1
Wang, S.-D.2
-
25
-
-
79952740423
-
Chance constrained uncertain classification via robust optimization
-
Mar.
-
A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. S. Nath, "Chance constrained uncertain classification via robust optimization," Math. Program., vol. 127, no. 1, pp. 145-173, Mar. 2011.
-
(2011)
Math. Program
, vol.127
, Issue.1
, pp. 145-173
-
-
Ben-Tal, A.1
Bhadra, S.2
Bhattacharyya, C.3
Nath, J.S.4
-
26
-
-
0001070999
-
Some modified matrix eigenvalue problems
-
G. Golub, "Some modified matrix eigenvalue problems," SIAM Rev., vol. 15, no. 2, pp. 318-344, 1973.
-
(1973)
SIAM Rev
, vol.15
, Issue.2
, pp. 318-344
-
-
Golub, G.1
-
27
-
-
0000333571
-
An analysis of the total least squares problem
-
Dec
-
G. Golub and C. V. Loan, "An analysis of the total least squares problem," SIAM J. Numer. Anal., vol. 17, pp. 883-893, Dec. 1973.
-
(1973)
SIAM J. Numer. Anal
, vol.17
, pp. 883-893
-
-
Golub, G.1
Loan, C.V.2
-
28
-
-
0028401357
-
Recurrent neural networks and robust time series prediction
-
Mar
-
J. Connor, R. Martin, and L. Atlas, "Recurrent neural networks and robust time series prediction," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 240-254, Mar. 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.2
, pp. 240-254
-
-
Connor, J.1
Martin, R.2
Atlas, L.3
-
29
-
-
0028428006
-
A robust backpropagation learning algorithm for function approximation
-
May
-
D. S. Chen and R. C. Jain, "A robust backpropagation learning algorithm for function approximation," IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 467-479, May 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.3
, pp. 467-479
-
-
Chen, D.S.1
Jain, R.C.2
-
30
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, E.1
Kennard, R.W.2
-
31
-
-
0020207081
-
Linear regression analysis with fuzzy model
-
Nov
-
H. Tanaka, S. Uejima, and K. Asai, "Linear regression analysis with fuzzy model," IEEE Trans. Syst. Man Cybern., vol. 12, no. 6, pp. 903-907, Nov. 1982.
-
(1982)
IEEE Trans. Syst. Man Cybern
, vol.12
, Issue.6
, pp. 903-907
-
-
Tanaka, H.1
Uejima, S.2
Asai, K.3
-
32
-
-
0000325717
-
Fuzzy least squares
-
Dec
-
P. Diamond, "Fuzzy least squares," Inf. Sci., vol. 46, pp. 141-157, Dec. 1988.
-
(1988)
Inf. Sci
, vol.46
, pp. 141-157
-
-
Diamond, P.1
-
33
-
-
0042496087
-
Multivariate Chebyshev inequality
-
Dec
-
A. W. Marshall and I. Olkin, "Multivariate Chebyshev inequality," Ann. Math. Stat., vol. 31, no. 4, pp. 1001-1014, Dec. 1960.
-
(1960)
Ann. Math. Stat
, vol.31
, Issue.4
, pp. 1001-1014
-
-
Marshall, A.W.1
Olkin, I.2
-
34
-
-
0041940559
-
Applications of second-order cone programming
-
Nov
-
M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, "Applications of second-order cone programming," Linear Algebra Its Appl., vol. 284, pp. 193-228, Nov. 1998.
-
(1998)
Linear Algebra Its Appl
, vol.284
, pp. 193-228
-
-
Lobo, M.1
Vandenberghe, L.2
Boyd, S.3
Lebret, H.4
-
35
-
-
0000561116
-
On the implementation of a primal-dual interior point method
-
S. Mehrotra, "On the implementation of a primal-dual interior point method," SIAM J. Opt., vol. 2, no. 4, pp. 575-601, 1992.
-
(1992)
SIAM J. Opt
, vol.2
, Issue.4
, pp. 575-601
-
-
Mehrotra, S.1
-
36
-
-
33845326781
-
Robust support vector machines for classification and computational issues
-
Feb
-
T. B. Trafalis and R. C. Gilbert, "Robust support vector machines for classification and computational issues," Optim. Methods Softw., vol. 22, no. 1, pp. 187-198, Feb. 2007.
-
(2007)
Optim. Methods Softw
, vol.22
, Issue.1
, pp. 187-198
-
-
Trafalis, T.B.1
Gilbert, R.C.2
-
37
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K. R. Muller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol. 10, no. 5, pp. 1299-1319, 1998.
-
(1998)
Neural Comput
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Muller, K.R.3
-
38
-
-
0041940559
-
Applications of second-order cone programming
-
M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, "Applications of second-order cone programming," Linear Algebra Its Appl., vol. 284, nos. 1-3, pp. 193-228, 1998.
-
(1998)
Linear Algebra Its Appl
, vol.284
, Issue.1-3
, pp. 193-228
-
-
Lobo, M.S.1
Vandenberghe, L.2
Boyd, S.3
Lebret, H.4
-
40
-
-
84876931673
-
-
[Online]
-
I. Polik. (2010). SeDuMi [Online]. Available: http://sedumi.ie.lehigh.edu
-
(2010)
SeDuMi
-
-
Polik, I.1
-
41
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones," Optim. Methods Softw., vol. 11, nos. 1-4, pp. 625-653, 1999.
-
(1999)
Optim. Methods Softw
, vol.11
, Issue.1-4
, pp. 625-653
-
-
Sturm, J.F.1
-
42
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
C. Chang and C. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol
, vol.2
, Issue.3
, pp. 1-27
-
-
Chang, C.1
Lin, C.2
|