메뉴 건너뛰기




Volumn 23, Issue 3, 2012, Pages 504-518

Domain adaptation from multiple sources: A domain-dependent regularization approach

Author keywords

Domain adaptation machine; domain dependent regularizer; multiple source domain adaptation

Indexed keywords

DOCUMENT RETRIEVAL; DOMAIN ADAPTATION; GENERALIZATION ABILITY; LABEL PREDICTIONS; REGULARIZATION APPROACH; REGULARIZER; SUPPORT VECTOR REGRESSION (SVR); VIDEO CONCEPT DETECTION;

EID: 84862192949     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2011.2178556     Document Type: Article
Times cited : (329)

References (49)
  • 1
    • 14344266561 scopus 로고    scopus 로고
    • Improving SVM accuracy by training on auxiliary data sources
    • Banff, AB, Canada Jul
    • P. Wu and T. G. Dietterich, "Improving SVM accuracy by training on auxiliary data sources," in Proc. Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 2004, pp. 871-878.
    • (2004) Proc. Int. Conf. Mach. Learn. , pp. 871-878
    • Wu, P.1    Dietterich, T.G.2
  • 7
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Dec
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Dec. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • May
    • L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM classification technique and a circular validation strategy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 10
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Jun
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. Int. Conf. Mach. Learn., Bled, Slovenia, Jun. 1999, pp. 200-209.
    • (1999) Proc. Int. Conf. Mach. Learn., Bled, Slovenia , pp. 200-209
    • Joachims, T.1
  • 11
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb.
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 12
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, Tech. Rep Jul
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, Tech. Rep. 1530, Jul. 2008.
    • (2008) Semi-supervised Learning Literature Survey , vol.1530
    • Zhu, X.1
  • 15
    • 85161964516 scopus 로고    scopus 로고
    • Direct importance estimation with model selection and its application to covariate shift adaptation
    • Cambridge, MA: MIT Press
    • M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, "Direct importance estimation with model selection and its application to covariate shift adaptation," in Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press, 2008, pp. 1433-1440.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1433-1440
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Buenau, P.V.4    Kawanabe, M.5
  • 18
    • 70049090801 scopus 로고    scopus 로고
    • An empirical analysis of domain adaptation algorithms for genomic sequence analysis
    • Cambridge, MA: MIT Press
    • G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, "An empirical analysis of domain adaptation algorithms for genomic sequence analysis," in Advances in Neural Information Processing Systems 21. Cambridge, MA: MIT Press, 2009, pp. 1433-1440.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1433-1440
    • Schweikert, G.1    Widmer, C.2    Schölkopf, B.3    Rätsch, G.4
  • 22
    • 50949127968 scopus 로고    scopus 로고
    • Learning from multiple sources
    • Aug
    • K. Crammer, M. Kearns, and J. Wortman, "Learning from multiple sources," J. Mach. Learn. Res., vol. 9, pp. 1757-1774, Aug. 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1757-1774
    • Crammer, K.1    Kearns, M.2    Wortman, J.3
  • 24
    • 84555168328 scopus 로고    scopus 로고
    • Domain adaptation: Learning bounds and algorithms
    • abs/0902.3
    • Y. Mansour, M. Mohri, and A. Rostamizadeh, "Domain adaptation: Learning bounds and algorithms," Comput. Res. Reposit., vol. abs/0902.3, no. 2007, pp. 1-12, 2009.
    • (2007) Comput. Res. Reposit , pp. 1-12
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 25
    • 80053374829 scopus 로고    scopus 로고
    • Impossibility theorems for domain adaptation
    • May
    • S. Ben-David, T. Luu, T. Lu, and D. Pál, "Impossibility theorems for domain adaptation," J. Mach. Learn. Res., vol. 9, pp. 129-136, May 2010.
    • (2010) J. Mach. Learn. Res , vol.9 , pp. 129-136
    • Ben-David, S.1    Luu, T.2    Lu, T.3    Pál, D.4
  • 28
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • Apr
    • T. Evgeniou, C. Micchelli, and M. Pontil, "Learning multiple tasks with kernel methods," J. Mach. Learn. Res., vol. 6, pp. 615-637, Apr. 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.2    Pontil, M.3
  • 34
    • 42249087646 scopus 로고    scopus 로고
    • Transductive inference and semi-supervised learning
    • Cambridge, MA: MIT Press
    • V. Vapnik, "Transductive inference and semi-supervised learning," in Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006, pp. 454-472.
    • (2006) Semi-Supervised Learning , pp. 454-472
    • Vapnik, V.1
  • 37
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Aug
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, Aug. 2004.
    • (2004) Stat. Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 38
    • 84864041407 scopus 로고    scopus 로고
    • Large-scale sparsified manifold regularization
    • Cambridge, MA: MIT Press
    • I. W. Tsang and J. T. Kwok, "Large-scale sparsified manifold regularization," in Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007, pp. 1401-1408.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1401-1408
    • Tsang, I.W.1    Kwok, J.T.2
  • 40
    • 67049145116 scopus 로고    scopus 로고
    • Semi-supervised learning using semidefinite programming
    • Cambridge, MA: MIT Press
    • T. D. Bie and N. Cristianini, "Semi-supervised learning using semidefinite programming," in Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006, pp. 119-135.
    • (2006) Semi-Supervised Learning , pp. 119-135
    • Bie, T.D.1    Cristianini, N.2
  • 41
  • 42
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct.
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 43
    • 63049087592 scopus 로고    scopus 로고
    • A multitask learning model for online pattern recognition
    • Mar
    • S. Ozawa, A. Roy, and D. Roussinov, "A multitask learning model for online pattern recognition," IEEE Trans. Neural Netw., vol. 20, no. 3, pp. 430-445, Mar. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.3 , pp. 430-445
    • Ozawa, S.1    Roy, A.2    Roussinov, D.3
  • 45
    • 84905180243 scopus 로고    scopus 로고
    • Columbia University/VIREO-cityU/IRIT TRECVID2008 high-level feature extraction and interactive video search
    • Gaithersburg MD Nov
    • S.-F. Chang, J. He, Y.-G. Jiang, E. E. Khoury, C.-W. Ngo, A. Yanagawa, and E. Zavesky, "Columbia University/VIREO-cityU/IRIT TRECVID2008 high-level feature extraction and interactive video search," in Proc. NIST TRECVID Workshop, Gaithersburg, MD, Nov. 2008, pp. 1-16.
    • (2008) Proc. NIST TRECVID Workshop , pp. 1-16
    • Chang, S.-F.1    He, J.2    Jiang, Y.-G.3    Khoury, E.E.4    Ngo, C.-W.5    Yanagawa, A.6    Zavesky, E.7
  • 48
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Cambridge, MA: MIT Press
    • J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 1999, pp. 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.