|
Volumn 17, Issue 1, 2004, Pages 127-141
|
Experimentally optimal ν in support vector regression for different noise models and parameter settings
|
Author keywords
Gaussian kernel; Model selection; Optimal ; Risk minimization; Support Vector machine parameters; Support Vector machines; Support Vector regression; Support Vector machines
|
Indexed keywords
ERROR ANALYSIS;
MATHEMATICAL MODELS;
PARAMETER ESTIMATION;
REGRESSION ANALYSIS;
SPURIOUS SIGNAL NOISE;
VECTORS;
SUPPORT VECTOR MACHINES (SVM);
NEURAL NETWORKS;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
COMPARATIVE STUDY;
EXPERIMENT;
LEARNING;
NOISE;
NONLINEAR SYSTEM;
NORMAL DISTRIBUTION;
PARAMETER;
PREDICTION;
PRIORITY JOURNAL;
REGRESSION ANALYSIS;
THEORETICAL MODEL;
|
EID: 0346881149
PISSN: 08936080
EISSN: None
Source Type: Journal
DOI: 10.1016/S0893-6080(03)00209-0 Document Type: Article |
Times cited : (153)
|
References (11)
|