메뉴 건너뛰기




Volumn 17, Issue 1, 2004, Pages 127-141

Experimentally optimal ν in support vector regression for different noise models and parameter settings

Author keywords

Gaussian kernel; Model selection; Optimal ; Risk minimization; Support Vector machine parameters; Support Vector machines; Support Vector regression; Support Vector machines

Indexed keywords

ERROR ANALYSIS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; REGRESSION ANALYSIS; SPURIOUS SIGNAL NOISE; VECTORS;

EID: 0346881149     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(03)00209-0     Document Type: Article
Times cited : (153)

References (11)
  • 4
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • B. Schölkopf, C. Burges, & A. Smola. MIT Press
    • Mattera D., Haykin S. Support vector machines for dynamic reconstruction of a chaotic system. Schölkopf B., Burges C., Smola A. Advances in kernel methods - Support vector learning. 1999;211-241 MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 211-241
    • Mattera, D.1    Haykin, S.2
  • 5
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for artificial neural networks
    • Murata N., Yoshizawa S., Amari S. Network information criterion - Determining the number of hidden units for artificial neural networks. IEEE Transactions on Neural Networks. 5:1994;865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.