메뉴 건너뛰기




Volumn 23, Issue 7, 2012, Pages 1142-1147

Simple proof of convergence of the SMO algorithm for different SVM variants

Author keywords

Classification; decomposition methods; regression; sequential minimum optimization (SMO); support vector machines

Indexed keywords

ASYMPTOTIC CONVERGENCE; DECOMPOSITION METHODS; MINIMUM NORM PROBLEMS; ONE-CLASS SVMS; REGRESSION; SEQUENTIAL MINIMUM OPTIMIZATIONS; SUPPORT VECTOR CLASSIFICATION; SUPPORT VECTOR REGRESSION (SVR);

EID: 84875884987     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2195198     Document Type: Article
Times cited : (31)

References (20)
  • 1
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge, MA: MIT Press
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 2
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to platt's SMO algorithm for SVM classifier design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to platt's SMO algorithm for SVM classifier design," Neural Comput., vol. 13, no. 3, pp. 637-649, 2001.
    • (2001) Neural Comput , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 4
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • S. S. Keerthi and E. G. Gilbert, "Convergence of a generalized SMO algorithm for SVM classifier design," Mach. Learn., vol. 46, no. 1, pp. 351-360, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 5
    • 19344375172 scopus 로고    scopus 로고
    • Rigorous proof of termination of SMO algorithm for support vector machines
    • May
    • N. Takahashi and T. Nishi, "Rigorous proof of termination of SMO algorithm for support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 774-776, May 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.3 , pp. 774-776
    • Takahashi, N.1    Nishi, T.2
  • 6
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Nov
    • C.-J. Lin, "On the convergence of the decomposition method for support vector machines," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1288-1298, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 7
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Jan
    • C.-J. Lin, "Asymptotic convergence of an SMO algorithm without any assumptions," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 248-250, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.1 , pp. 248-250
    • Lin, C.-J.1
  • 8
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Jul
    • P.-H. Chen, R.-E. Fan, and C.-J. Lin, "A study on SMO-type decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 893-908, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 9
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statist. Comput., vol. 14, no. 3, pp. 199-222, 2003.
    • (2003) Statist. Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 11
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • G. W. Flake and S. Lawrence, "Efficient SVM regression training with SMO," Mach. Learn., vol. 46, nos. 1-3, pp. 271-290, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 12
    • 49149114060 scopus 로고    scopus 로고
    • Global convergence of SMO algorithm for support vector regression
    • Jun
    • N. Takahashi and T. Nishi, "Global convergence of SMO algorithm for support vector regression," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 971-982, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.6 , pp. 971-982
    • Takahashi, N.1    Nishi, T.2
  • 14
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Cambridge, MA: MIT Press
    • T. Joachims, "Making large-scale support vector machine learning practical," in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 15
    • 0002274728 scopus 로고
    • An iterative procedure for computing the minimum of a quadratic form on a convex set
    • E. G. Gilbert, "An iterative procedure for computing the minimum of a quadratic form on a convex set," SIAM J. Control, vol. 4, no. 1, pp. 61-80, 1966.
    • (1966) SIAM J. Control , vol.4 , Issue.1 , pp. 61-80
    • Gilbert, E.G.1
  • 16
    • 0242320492 scopus 로고    scopus 로고
    • Uniqueness theorems for kernel methods
    • C. J. C. Burges and D. J. Crisp, "Uniqueness theorems for kernel methods," Neurocomputing, vol. 55, nos. 1-2, pp. 187-220, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 187-220
    • Burges, C.J.C.1    Crisp, D.J.2
  • 18
    • 78649326085 scopus 로고    scopus 로고
    • Clipping algorithms for solving the nearest point problem over reduced convex hulls
    • J. López, A. Barbero, and J. R. Dorronsoro, "Clipping algorithms for solving the nearest point problem over reduced convex hulls," Pattern Recog., vol. 44, no. 3, pp. 607-614, 2011.
    • (2011) Pattern Recog , vol.44 , Issue.3 , pp. 607-614
    • López, J.1    Barbero, A.2    Dorronsoro, J.R.3
  • 19
    • 80054733933 scopus 로고    scopus 로고
    • Convergence of algorithms for solving the nearest point problem in scaled convex hulls
    • J. López and J. R. Dorronsoro, "Convergence of algorithms for solving the nearest point problem in scaled convex hulls," in Proc. Int. Joint Conf. Neural Netw., 2011, pp. 413-420.
    • (2011) Proc. Int. Joint Conf. Neural Netw , pp. 413-420
    • López, J.1    Dorronsoro, J.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.