메뉴 건너뛰기




Volumn 18, Issue 2, 2014, Pages 210-213

Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy

Author keywords

AMPK; Autophagy; Diabetic nephropathy; mTORC1; Proteinuria; Sirt1

Indexed keywords

AUTOPHAGY; DIABETIC NEPHROPATHY; HUMAN; NONHUMAN; NUTRIENT; NUTRIENT SENSING PATHWAY; PATHOGENESIS; REVIEW; ANIMAL; DIABETIC NEPHROPATHIES; METABOLISM; PHYSIOLOGY; PODOCYTE;

EID: 84900333241     PISSN: 13421751     EISSN: 14377799     Source Type: Journal    
DOI: 10.1007/s10157-013-0908-3     Document Type: Review
Times cited : (10)

References (56)
  • 2
    • 84872313601 scopus 로고    scopus 로고
    • Mechanisms of diabetic complications
    • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137-88.
    • (2013) Physiol Rev , vol.93 , pp. 137-188
    • Forbes, J.M.1    Cooper, M.E.2
  • 3
    • 79953764336 scopus 로고    scopus 로고
    • Molecular mechanisms of diabetic vascular complications
    • Kitada M, Zhang Z, Mima A, et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Invest. 2010;1:77-89.
    • (2010) J Diabetes Invest , vol.1 , pp. 77-89
    • Kitada, M.1    Zhang, Z.2    Mima, A.3
  • 4
    • 20044376702 scopus 로고    scopus 로고
    • The pathobiology of diabetic complications: A unifying mechanism
    • DOI 10.2337/diabetes.54.6.1615
    • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25. (Pubitemid 40770750)
    • (2005) Diabetes , vol.54 , Issue.6 , pp. 1615-1625
    • Brownlee, M.1
  • 5
    • 0033857113 scopus 로고    scopus 로고
    • Aldose reductase and the role of the polyol pathway in diabetic nephropathy
    • Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 2000;Suppl 77:S3-12.
    • (2000) Kidney Int , Issue.SUPPL. 77
    • Dunlop, M.1
  • 6
    • 0031860340 scopus 로고    scopus 로고
    • Protein kinase C activation and the development of diabetic complications
    • DOI 10.2337/diabetes.47.6.859
    • Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859-66. (Pubitemid 28255657)
    • (1998) Diabetes , vol.47 , Issue.6 , pp. 859-866
    • Koya, D.1    King, G.L.2
  • 8
    • 84861987865 scopus 로고    scopus 로고
    • Therapeutic management of diabetic kidney disease
    • Koya D, Araki S, Haneda M. Therapeutic management of diabetic kidney disease. J Diabetes Invest. 2011;2:248-54.
    • (2011) J Diabetes Invest , vol.2 , pp. 248-254
    • Koya, D.1    Araki, S.2    Haneda, M.3
  • 9
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458:1131-5.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 11
    • 84866142024 scopus 로고    scopus 로고
    • Emerging role of autophagy in kidney function, diseases and aging
    • Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 2012;8:1009-31.
    • (2012) Autophagy , vol.8 , pp. 1009-1031
    • Huber, T.B.1    Edelstein, C.L.2    Hartleben, B.3
  • 12
    • 77951169411 scopus 로고    scopus 로고
    • Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
    • Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010; 120:1084-96.
    • (2010) J Clin Invest , vol.120 , pp. 1084-1096
    • Hartleben, B.1    Godel, M.2    Meyer-Schwesinger, C.3
  • 13
    • 77749264299 scopus 로고    scopus 로고
    • Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
    • Jiang M, Liu K, Luo J, et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol. 2010;176:1181-92.
    • (2010) Am J Pathol , vol.176 , pp. 1181-1192
    • Jiang, M.1    Liu, K.2    Luo, J.3
  • 14
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120:1043-55.
    • (2010) J Clin Invest , vol.120 , pp. 1043-1055
    • Kume, S.1    Uzu, T.2    Horiike, K.3
  • 15
    • 84862635122 scopus 로고    scopus 로고
    • Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
    • Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 2012;8:826-37.
    • (2012) Autophagy , vol.8 , pp. 826-837
    • Liu, S.1    Hartleben, B.2    Kretz, O.3
  • 16
    • 49749120592 scopus 로고    scopus 로고
    • Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
    • Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 2008;74:631-40.
    • (2008) Kidney Int , vol.74 , pp. 631-640
    • Periyasamy-Thandavan, S.1    Jiang, M.2    Wei, Q.3
  • 17
    • 84855996286 scopus 로고    scopus 로고
    • Autophagy guards against cisplatin-induced acute kidney injury
    • Takahashi A, Kimura T, Takabatake Y, et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol. 2012;180:517-25.
    • (2012) Am J Pathol , vol.180 , pp. 517-525
    • Takahashi, A.1    Kimura, T.2    Takabatake, Y.3
  • 18
    • 84555195156 scopus 로고    scopus 로고
    • Nutrient sensing, autophagy, and diabetic nephropathy
    • Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes. 2012;61:23-9.
    • (2012) Diabetes. , vol.61 , pp. 23-29
    • Kume, S.1    Thomas, M.C.2    Koya, D.3
  • 19
    • 84855185046 scopus 로고    scopus 로고
    • Autophagy as a therapeutic target in diabetic nephropathy
    • Tanaka Y, Kume S, Kitada M, et al.Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res. 2012;2012:628978.
    • (2012) Exp Diabetes Res , vol.2012 , pp. 628978
    • Tanaka, Y.1    Kume, S.2    Kitada, M.3
  • 24
    • 38349057990 scopus 로고    scopus 로고
    • Regulation of elongation phase of mRNA translation in diabetic nephropathy: Amelioration by rapamycin
    • Sataranatarajan K, Mariappan MM, Lee MJ, et al. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol. 2007;171:1733-42.
    • (2007) Am J Pathol. , vol.171 , pp. 1733-1742
    • Sataranatarajan, K.1    Mariappan, M.M.2    Lee, M.J.3
  • 25
    • 65649120747 scopus 로고    scopus 로고
    • The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential
    • Mori H, Inoki K, Masutani K, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun. 2009;384:471-5.
    • (2009) Biochem Biophys Res Commun. , vol.384 , pp. 471-475
    • Mori, H.1    Inoki, K.2    Masutani, K.3
  • 26
    • 79957881425 scopus 로고    scopus 로고
    • Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
    • Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197-209.
    • (2011) J Clin Invest. , vol.121 , pp. 2197-2209
    • Godel, M.1    Hartleben, B.2    Herbach, N.3
  • 27
    • 79957927211 scopus 로고    scopus 로고
    • mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
    • Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181-96.
    • (2011) J Clin Invest. , vol.121 , pp. 2181-2196
    • Inoki, K.1    Mori, H.2    Wang, J.3
  • 29
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-93.
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 30
    • 78149475088 scopus 로고    scopus 로고
    • Regulation of mammalian autophagy in physiology and pathophysiology
    • Ravikumar B, Sarkar S, Davies JE. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90:1383-435.
    • (2010) Physiol Rev. , vol.90 , pp. 1383-1435
    • Ravikumar, B.1    Sarkar, S.2    Davies, J.E.3
  • 31
    • 77949552845 scopus 로고    scopus 로고
    • Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK
    • Ding DF, You N, Wu XM, et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol. 2010;31:363-74.
    • (2010) Am J Nephrol. , vol.31 , pp. 363-374
    • Ding, D.F.1    You, N.2    Wu, X.M.3
  • 32
    • 84876117324 scopus 로고    scopus 로고
    • Autophagy attenuates diabetic glomerular damage through protection of hyperglycemis-induced podocyte injury
    • Fang L, Zhou Y, Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemis-induced podocyte injury. PLoS One. 2013;8:e60546.
    • (2013) PLoS One , vol.8
    • Fang, L.1    Zhou, Y.2    Cao, H.3
  • 33
    • 44949176568 scopus 로고    scopus 로고
    • Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats
    • Cammisotto PG, Londono I, Gingras D, et al. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol. 2008;294:F881-9.
    • (2008) Am J Physiol Renal Physiol , vol.294
    • Cammisotto, P.G.1    Londono, I.2    Gingras, D.3
  • 34
    • 77954767650 scopus 로고    scopus 로고
    • Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model
    • Sokolovska J, Isajevs S, Sugoka O, et al. Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch Physiol Biochem. 2010;116: 137-45.
    • (2010) Arch Physiol Biochem. , vol.116 , pp. 137-145
    • Sokolovska, J.1    Isajevs, S.2    Sugoka, O.3
  • 35
    • 67650501025 scopus 로고    scopus 로고
    • Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KKAy/ Ta mice
    • Yamazaki T, Tanimoto M, Gohda T, et al. Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KKAy/ Ta mice. Nephron Exp Nephrol. 2009;113:e66-76.
    • (2009) Nephron Exp Nephrol , vol.113
    • Yamazaki, T.1    Tanimoto, M.2    Gohda, T.3
  • 36
    • 79959442302 scopus 로고    scopus 로고
    • Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase
    • Chang CC, Chang CY, Wu YT, et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci. 2011;18:47.
    • (2011) J Biomed Sci. , vol.18 , pp. 47
    • Chang, C.C.1    Chang, C.Y.2    Wu, Y.T.3
  • 39
    • 79953240855 scopus 로고    scopus 로고
    • Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis
    • Tanaka Y, Kume S, Araki S, et al. Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int. 2011;79:871-82.
    • (2011) Kidney Int , vol.79 , pp. 871-882
    • Tanaka, Y.1    Kume, S.2    Araki, S.3
  • 40
    • 25444465657 scopus 로고    scopus 로고
    • Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway
    • DOI 10.1074/jbc.M500801200
    • Jiang T, Wang Z, Proctor G, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein- 1c-dependent pathway. J Biol Chem. 2005;280:32317-25. (Pubitemid 41361841)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.37 , pp. 32317-32325
    • Jiang, T.1    Wang, Z.2    Proctor, G.3    Moskowitz, S.4    Liebman, S.E.5    Rogers, T.6    Lucia, M.S.7    Li, J.8    Levi, M.9
  • 42
    • 0142181286 scopus 로고    scopus 로고
    • Malonyl-CoA and AMP-activated protein kinase: An expanding partnership
    • DOI 10.1023/A:1026053302036
    • Saha AK, Ruderman NB. Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem. 2003;253:65-70. (Pubitemid 37321713)
    • (2003) Molecular and Cellular Biochemistry , vol.253 , Issue.1-2 , pp. 65-70
    • Saha, A.K.1    Ruderman, N.B.2
  • 43
    • 77957349477 scopus 로고    scopus 로고
    • AMP-activated protein kinase and its downstream transcriptional pathways
    • Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci. 2010;67:3407-23.
    • (2010) Cell Mol Life Sci. , vol.67 , pp. 3407-3423
    • Canto, C.1    Auwerx, J.2
  • 44
    • 67650914230 scopus 로고    scopus 로고
    • AMPK in health and disease
    • Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025-78.
    • (2009) Physiol Rev. , vol.89 , pp. 1025-1078
    • Steinberg, G.R.1    Kemp, B.E.2
  • 45
    • 78149476877 scopus 로고    scopus 로고
    • The association of AMPK with ULK1 regulates autophagy
    • Lee JW, Park S, Takahashi Y, et al. The association of AMPK with ULK1 regulates autophagy. PLoS One. 2010;5:e15394.
    • (2010) PLoS One. , vol.5
    • Lee, J.W.1    Park, S.2    Takahashi, Y.3
  • 46
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system. Nature. 2010;466:68-76.
    • (2010) Nature. , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3
  • 47
    • 84872008953 scopus 로고    scopus 로고
    • Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy
    • Lond
    • Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond). 2013;124:153-64.
    • (2013) Clin Sci , vol.124 , pp. 153-164
    • Kitada, M.1    Kume, S.2    Takeda-Watanabe, A.3
  • 48
    • 84878574279 scopus 로고    scopus 로고
    • Sirtuins as possible drug targets in type 2 diabetes
    • Kitada M, Kume S, Kanasaki K, et al. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets. 2013;14:622-36.
    • (2013) Curr Drug Targets. , vol.14 , pp. 622-636
    • Kitada, M.1    Kume, S.2    Kanasaki, K.3
  • 50
    • 77952547233 scopus 로고    scopus 로고
    • Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases
    • Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci. 2010;31:212-20.
    • (2010) Trends Pharmacol Sci. , vol.31 , pp. 212-220
    • Imai, S.1    Guarente, L.2
  • 52
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD? Metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD? metabolism and SIRT1 activity. Nature. 2009;458:1056-60.
    • (2009) Nature. , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 53
    • 77950127881 scopus 로고    scopus 로고
    • SIRT1 negatively regulates the mammalian target of rapamycin
    • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5:e9199.
    • (2010) PLoS One. , vol.5
    • Ghosh, H.S.1    McBurney, M.2    Robbins, P.D.3
  • 54
    • 33847091642 scopus 로고    scopus 로고
    • Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53
    • DOI 10.1016/j.febslet.2007.02.006, PII S001457930700155X
    • Tikoo K, Tripathi DN, Kabra DG, et al. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett. 2007;581:1071-8. (Pubitemid 46282743)
    • (2007) FEBS Letters , vol.581 , Issue.5 , pp. 1071-1078
    • Tikoo, K.1    Tripathi, D.N.2    Kabra, D.G.3    Sharma, V.4    Gaikwad, A.B.5
  • 55
    • 48849086013 scopus 로고    scopus 로고
    • Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy
    • Tikoo K, Singh K, Kabra D, et al. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res. 2008;42:397-404.
    • (2008) Free Radic Res. , vol.42 , pp. 397-404
    • Tikoo, K.1    Singh, K.2    Kabra, D.3
  • 56
    • 81555225308 scopus 로고    scopus 로고
    • Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: A model of type 2 diabetes
    • Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185.
    • (2011) Exp Diabetes Res , vol.2011 , pp. 908185
    • Kitada, M.1    Takeda, A.2    Nagai, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.