-
2
-
-
84872313601
-
Mechanisms of diabetic complications
-
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137-88.
-
(2013)
Physiol Rev
, vol.93
, pp. 137-188
-
-
Forbes, J.M.1
Cooper, M.E.2
-
3
-
-
79953764336
-
Molecular mechanisms of diabetic vascular complications
-
Kitada M, Zhang Z, Mima A, et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Invest. 2010;1:77-89.
-
(2010)
J Diabetes Invest
, vol.1
, pp. 77-89
-
-
Kitada, M.1
Zhang, Z.2
Mima, A.3
-
4
-
-
20044376702
-
The pathobiology of diabetic complications: A unifying mechanism
-
DOI 10.2337/diabetes.54.6.1615
-
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25. (Pubitemid 40770750)
-
(2005)
Diabetes
, vol.54
, Issue.6
, pp. 1615-1625
-
-
Brownlee, M.1
-
5
-
-
0033857113
-
Aldose reductase and the role of the polyol pathway in diabetic nephropathy
-
Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 2000;Suppl 77:S3-12.
-
(2000)
Kidney Int
, Issue.SUPPL. 77
-
-
Dunlop, M.1
-
6
-
-
0031860340
-
Protein kinase C activation and the development of diabetic complications
-
DOI 10.2337/diabetes.47.6.859
-
Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859-66. (Pubitemid 28255657)
-
(1998)
Diabetes
, vol.47
, Issue.6
, pp. 859-866
-
-
Koya, D.1
King, G.L.2
-
8
-
-
84861987865
-
Therapeutic management of diabetic kidney disease
-
Koya D, Araki S, Haneda M. Therapeutic management of diabetic kidney disease. J Diabetes Invest. 2011;2:248-54.
-
(2011)
J Diabetes Invest
, vol.2
, pp. 248-254
-
-
Koya, D.1
Araki, S.2
Haneda, M.3
-
9
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458:1131-5.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
-
11
-
-
84866142024
-
Emerging role of autophagy in kidney function, diseases and aging
-
Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 2012;8:1009-31.
-
(2012)
Autophagy
, vol.8
, pp. 1009-1031
-
-
Huber, T.B.1
Edelstein, C.L.2
Hartleben, B.3
-
12
-
-
77951169411
-
Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
-
Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010; 120:1084-96.
-
(2010)
J Clin Invest
, vol.120
, pp. 1084-1096
-
-
Hartleben, B.1
Godel, M.2
Meyer-Schwesinger, C.3
-
13
-
-
77749264299
-
Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
-
Jiang M, Liu K, Luo J, et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol. 2010;176:1181-92.
-
(2010)
Am J Pathol
, vol.176
, pp. 1181-1192
-
-
Jiang, M.1
Liu, K.2
Luo, J.3
-
14
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120:1043-55.
-
(2010)
J Clin Invest
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
Uzu, T.2
Horiike, K.3
-
15
-
-
84862635122
-
Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
-
Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 2012;8:826-37.
-
(2012)
Autophagy
, vol.8
, pp. 826-837
-
-
Liu, S.1
Hartleben, B.2
Kretz, O.3
-
16
-
-
49749120592
-
Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
-
Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 2008;74:631-40.
-
(2008)
Kidney Int
, vol.74
, pp. 631-640
-
-
Periyasamy-Thandavan, S.1
Jiang, M.2
Wei, Q.3
-
17
-
-
84855996286
-
Autophagy guards against cisplatin-induced acute kidney injury
-
Takahashi A, Kimura T, Takabatake Y, et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol. 2012;180:517-25.
-
(2012)
Am J Pathol
, vol.180
, pp. 517-525
-
-
Takahashi, A.1
Kimura, T.2
Takabatake, Y.3
-
18
-
-
84555195156
-
Nutrient sensing, autophagy, and diabetic nephropathy
-
Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes. 2012;61:23-9.
-
(2012)
Diabetes.
, vol.61
, pp. 23-29
-
-
Kume, S.1
Thomas, M.C.2
Koya, D.3
-
19
-
-
84855185046
-
Autophagy as a therapeutic target in diabetic nephropathy
-
Tanaka Y, Kume S, Kitada M, et al.Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res. 2012;2012:628978.
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 628978
-
-
Tanaka, Y.1
Kume, S.2
Kitada, M.3
-
21
-
-
23944491271
-
Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy
-
DOI 10.1681/ASN.2004100894
-
Chen JK, Chen J, Neilson EG, et al. Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy. J Am Soc Nephrol. 2005;16:1384-91. (Pubitemid 41716522)
-
(2005)
Journal of the American Society of Nephrology
, vol.16
, Issue.5
, pp. 1384-1391
-
-
Chen, J.-K.1
Chen, J.2
Neilson, E.G.3
Harris, R.C.4
-
22
-
-
29244486472
-
Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice
-
DOI 10.1016/j.bbrc.2005.12.012, PII S0006291X0502752X
-
Sakaguchi M, Isono M, Isshiki K, et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006;340:296-301. (Pubitemid 41827680)
-
(2006)
Biochemical and Biophysical Research Communications
, vol.340
, Issue.1
, pp. 296-301
-
-
Sakaguchi, M.1
Isono, M.2
Isshiki, K.3
Sugimoto, T.4
Koya, D.5
Kashiwagi, A.6
-
23
-
-
34748880045
-
Rapamycin prevents early steps of the development of diabetic nephropathy in rats
-
DOI 10.1159/000106782
-
Yang Y, Wang J, Qin L, et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol. 2007;27:495-502. (Pubitemid 47482007)
-
(2007)
American Journal of Nephrology
, vol.27
, Issue.5
, pp. 495-502
-
-
Yang, Y.1
Wang, J.2
Qin, L.3
Shou, Z.4
Zhao, J.5
Wang, H.6
Chen, Y.7
Chen, J.8
-
24
-
-
38349057990
-
Regulation of elongation phase of mRNA translation in diabetic nephropathy: Amelioration by rapamycin
-
Sataranatarajan K, Mariappan MM, Lee MJ, et al. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol. 2007;171:1733-42.
-
(2007)
Am J Pathol.
, vol.171
, pp. 1733-1742
-
-
Sataranatarajan, K.1
Mariappan, M.M.2
Lee, M.J.3
-
25
-
-
65649120747
-
The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential
-
Mori H, Inoki K, Masutani K, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun. 2009;384:471-5.
-
(2009)
Biochem Biophys Res Commun.
, vol.384
, pp. 471-475
-
-
Mori, H.1
Inoki, K.2
Masutani, K.3
-
26
-
-
79957881425
-
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
-
Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197-209.
-
(2011)
J Clin Invest.
, vol.121
, pp. 2197-2209
-
-
Godel, M.1
Hartleben, B.2
Herbach, N.3
-
27
-
-
79957927211
-
mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
-
Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181-96.
-
(2011)
J Clin Invest.
, vol.121
, pp. 2181-2196
-
-
Inoki, K.1
Mori, H.2
Wang, J.3
-
29
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-93.
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
30
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar B, Sarkar S, Davies JE. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90:1383-435.
-
(2010)
Physiol Rev.
, vol.90
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
-
31
-
-
77949552845
-
Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK
-
Ding DF, You N, Wu XM, et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol. 2010;31:363-74.
-
(2010)
Am J Nephrol.
, vol.31
, pp. 363-374
-
-
Ding, D.F.1
You, N.2
Wu, X.M.3
-
32
-
-
84876117324
-
Autophagy attenuates diabetic glomerular damage through protection of hyperglycemis-induced podocyte injury
-
Fang L, Zhou Y, Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemis-induced podocyte injury. PLoS One. 2013;8:e60546.
-
(2013)
PLoS One
, vol.8
-
-
Fang, L.1
Zhou, Y.2
Cao, H.3
-
33
-
-
44949176568
-
Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats
-
Cammisotto PG, Londono I, Gingras D, et al. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol. 2008;294:F881-9.
-
(2008)
Am J Physiol Renal Physiol
, vol.294
-
-
Cammisotto, P.G.1
Londono, I.2
Gingras, D.3
-
34
-
-
77954767650
-
Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model
-
Sokolovska J, Isajevs S, Sugoka O, et al. Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch Physiol Biochem. 2010;116: 137-45.
-
(2010)
Arch Physiol Biochem.
, vol.116
, pp. 137-145
-
-
Sokolovska, J.1
Isajevs, S.2
Sugoka, O.3
-
35
-
-
67650501025
-
Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KKAy/ Ta mice
-
Yamazaki T, Tanimoto M, Gohda T, et al. Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KKAy/ Ta mice. Nephron Exp Nephrol. 2009;113:e66-76.
-
(2009)
Nephron Exp Nephrol
, vol.113
-
-
Yamazaki, T.1
Tanimoto, M.2
Gohda, T.3
-
36
-
-
79959442302
-
Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase
-
Chang CC, Chang CY, Wu YT, et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci. 2011;18:47.
-
(2011)
J Biomed Sci.
, vol.18
, pp. 47
-
-
Chang, C.C.1
Chang, C.Y.2
Wu, Y.T.3
-
37
-
-
33846854690
-
A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy
-
DOI 10.1152/ajprenal.00278.2006
-
Lee MJ, Feliers D, Mariappan MM, et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2007;292:F617-27. (Pubitemid 46220529)
-
(2007)
American Journal of Physiology - Renal Physiology
, vol.292
, Issue.2
-
-
Lee, M.-J.1
Feliers, D.2
Mariappan, M.M.3
Sataranatarajan, K.4
Mahimainathan, L.5
Musi, N.6
Foretz, M.7
Viollet, B.8
Weinberg, J.M.9
Choudhury, G.G.10
Kasinath, B.S.11
-
38
-
-
34948821093
-
Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet
-
DOI 10.1681/ASN.2007010089
-
Kume S, Uzu T, Araki S, et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol. 2007;18:2715-23. (Pubitemid 47531198)
-
(2007)
Journal of the American Society of Nephrology
, vol.18
, Issue.10
, pp. 2715-2723
-
-
Kume, S.1
Uzu, T.2
Araki, S.-I.3
Sugimoto, T.4
Isshiki, K.5
Chin-Kanasaki, M.6
Sakaguchi, M.7
Kubota, N.8
Terauchi, Y.9
Kadowaki, T.10
Haneda, M.11
Kashiwagi, A.12
Koya, D.13
-
39
-
-
79953240855
-
Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis
-
Tanaka Y, Kume S, Araki S, et al. Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int. 2011;79:871-82.
-
(2011)
Kidney Int
, vol.79
, pp. 871-882
-
-
Tanaka, Y.1
Kume, S.2
Araki, S.3
-
40
-
-
25444465657
-
Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway
-
DOI 10.1074/jbc.M500801200
-
Jiang T, Wang Z, Proctor G, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein- 1c-dependent pathway. J Biol Chem. 2005;280:32317-25. (Pubitemid 41361841)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.37
, pp. 32317-32325
-
-
Jiang, T.1
Wang, Z.2
Proctor, G.3
Moskowitz, S.4
Liebman, S.E.5
Rogers, T.6
Lucia, M.S.7
Li, J.8
Levi, M.9
-
41
-
-
23644438916
-
db/db mice with type 2 diabetes
-
DOI 10.2337/diabetes.54.8.2328
-
Wang Z, Jiang T, Li J, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes. 2005;54:2328-35. (Pubitemid 41134259)
-
(2005)
Diabetes
, vol.54
, Issue.8
, pp. 2328-2335
-
-
Wang, Z.1
Jiang, T.2
Li, J.3
Proctor, G.4
McManaman, J.L.5
Lucia, S.6
Chua, S.7
Levi, M.8
-
42
-
-
0142181286
-
Malonyl-CoA and AMP-activated protein kinase: An expanding partnership
-
DOI 10.1023/A:1026053302036
-
Saha AK, Ruderman NB. Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem. 2003;253:65-70. (Pubitemid 37321713)
-
(2003)
Molecular and Cellular Biochemistry
, vol.253
, Issue.1-2
, pp. 65-70
-
-
Saha, A.K.1
Ruderman, N.B.2
-
43
-
-
77957349477
-
AMP-activated protein kinase and its downstream transcriptional pathways
-
Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci. 2010;67:3407-23.
-
(2010)
Cell Mol Life Sci.
, vol.67
, pp. 3407-3423
-
-
Canto, C.1
Auwerx, J.2
-
45
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
Lee JW, Park S, Takahashi Y, et al. The association of AMPK with ULK1 regulates autophagy. PLoS One. 2010;5:e15394.
-
(2010)
PLoS One.
, vol.5
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
-
46
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system. Nature. 2010;466:68-76.
-
(2010)
Nature.
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
-
47
-
-
84872008953
-
Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy
-
Lond
-
Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond). 2013;124:153-64.
-
(2013)
Clin Sci
, vol.124
, pp. 153-164
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
-
48
-
-
84878574279
-
Sirtuins as possible drug targets in type 2 diabetes
-
Kitada M, Kume S, Kanasaki K, et al. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets. 2013;14:622-36.
-
(2013)
Curr Drug Targets.
, vol.14
, pp. 622-636
-
-
Kitada, M.1
Kume, S.2
Kanasaki, K.3
-
50
-
-
77952547233
-
Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases
-
Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci. 2010;31:212-20.
-
(2010)
Trends Pharmacol Sci.
, vol.31
, pp. 212-220
-
-
Imai, S.1
Guarente, L.2
-
51
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
DOI 10.1073/pnas.0712145105
-
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374-9. (Pubitemid 351723560)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.9
, pp. 3374-3379
-
-
In, H.L.1
Cao, L.2
Mostoslavsky, R.3
Lombard, D.B.4
Liu, J.5
Bruns, N.E.6
Tsokos, M.7
Alt, F.W.8
Finkel, T.9
-
52
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD? Metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD? metabolism and SIRT1 activity. Nature. 2009;458:1056-60.
-
(2009)
Nature.
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
53
-
-
77950127881
-
SIRT1 negatively regulates the mammalian target of rapamycin
-
Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5:e9199.
-
(2010)
PLoS One.
, vol.5
-
-
Ghosh, H.S.1
McBurney, M.2
Robbins, P.D.3
-
54
-
-
33847091642
-
Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53
-
DOI 10.1016/j.febslet.2007.02.006, PII S001457930700155X
-
Tikoo K, Tripathi DN, Kabra DG, et al. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett. 2007;581:1071-8. (Pubitemid 46282743)
-
(2007)
FEBS Letters
, vol.581
, Issue.5
, pp. 1071-1078
-
-
Tikoo, K.1
Tripathi, D.N.2
Kabra, D.G.3
Sharma, V.4
Gaikwad, A.B.5
-
55
-
-
48849086013
-
Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy
-
Tikoo K, Singh K, Kabra D, et al. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res. 2008;42:397-404.
-
(2008)
Free Radic Res.
, vol.42
, pp. 397-404
-
-
Tikoo, K.1
Singh, K.2
Kabra, D.3
-
56
-
-
81555225308
-
Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: A model of type 2 diabetes
-
Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185.
-
(2011)
Exp Diabetes Res
, vol.2011
, pp. 908185
-
-
Kitada, M.1
Takeda, A.2
Nagai, T.3
|