메뉴 건너뛰기




Volumn 49, Issue 5, 2014, Pages 1193-1209

A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304

Author keywords

Artificial neural network; Dynamic aging regime; Multi gene genetic programming; Support vector regression; True stress

Indexed keywords

AUSTENITIC STAINLESS STEEL; GENETIC PROGRAMMING; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; NUCLEAR REACTORS; REGRESSION ANALYSIS; TENSILE TESTING;

EID: 84899632962     PISSN: 00256455     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11012-013-9873-x     Document Type: Article
Times cited : (42)

References (54)
  • 1
    • 0024035447 scopus 로고
    • Strain aging effects on the cyclic behavior of austenitic stainless steels
    • 10.1016/0022-3115(88)90388-1
    • Armas A, Bettin O, Alvarez-Armas I, Rubiolo G (1988) Strain aging effects on the cyclic behavior of austenitic stainless steels. J Nucl Mater 155:644-649
    • (1988) J Nucl Mater , vol.155 , pp. 644-649
    • Armas, A.1    Bettin, O.2    Alvarez-Armas, I.3    Rubiolo, G.4
  • 2
    • 46049094611 scopus 로고    scopus 로고
    • The influence of temperature on the cyclic behavior of aged and unaged super duplex stainless steels
    • 10.1016/j.msea.2008.02.028
    • Armas A, Hereñú S, Alvarez-Armas I, Degallaix S, Condó A, Lovey F (2008) The influence of temperature on the cyclic behavior of aged and unaged super duplex stainless steels. Mater Sci Eng A 491:434-439
    • (2008) Mater Sci Eng A , vol.491 , pp. 434-439
    • Armas, A.1    Hereñú, S.2    Alvarez-Armas, I.3    Degallaix, S.4    Condó, A.5    Lovey, F.6
  • 3
    • 80155167207 scopus 로고    scopus 로고
    • Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network
    • 10.1016/j.matdes.2011.09.060
    • Gupta AK, Singh SK, Reddy S, Hariharan G (2012) Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network. Mater Des 35:589-595
    • (2012) Mater des , vol.35 , pp. 589-595
    • Gupta, A.K.1    Singh, S.K.2    Reddy, S.3    Hariharan, G.4
  • 4
    • 47749106824 scopus 로고    scopus 로고
    • Model selection approaches for nonlinear system identification: A review
    • 10.1080/00207720802083018 1233.93097
    • Hong X, Mitchell R, Chen S, Harris CJ, Li K, Irwin G (2008) Model selection approaches for nonlinear system identification: a review. Int J Syst Sci 39:925-946
    • (2008) Int J Syst Sci , vol.39 , pp. 925-946
    • Hong, X.1    Mitchell, R.2    Chen, S.3    Harris, C.J.4    Li, K.5    Irwin, G.6
  • 5
    • 0030271028 scopus 로고    scopus 로고
    • Aging effects on the cyclic deformation mechanisms of a duplex stainless steel
    • 10.1016/S1359-6454(96)00045-6
    • Llanes L, Mateo A, Iturgoyen L, Anglada M (1996) Aging effects on the cyclic deformation mechanisms of a duplex stainless steel. Acta Mater 44:3967-3978
    • (1996) Acta Mater , vol.44 , pp. 3967-3978
    • Llanes, L.1    Mateo, A.2    Iturgoyen, L.3    Anglada, M.4
  • 6
    • 3242664599 scopus 로고    scopus 로고
    • Effect of dynamic strain aging on high temperature properties of austenitic stainless steel
    • 10.1016/j.msea.2004.03.004
    • Peng K, Qian K, Chen W (2004) Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A 379:372-377
    • (2004) Mater Sci Eng A , vol.379 , pp. 372-377
    • Peng, K.1    Qian, K.2    Chen, W.3
  • 7
    • 0043065613 scopus 로고    scopus 로고
    • Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel
    • 10.1016/S0043-1648(03)00055-3
    • Wang X, Li D (2003) Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel. Wear 255:836-845
    • (2003) Wear , vol.255 , pp. 836-845
    • Wang, X.1    Li, D.2
  • 8
    • 79251648020 scopus 로고    scopus 로고
    • A critical review of experimental results and constitutive descriptions for metals and alloys in hot working
    • 10.1016/j.matdes.2010.11.048
    • Lin Y, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733-1759
    • (2011) Mater des , vol.32 , pp. 1733-1759
    • Lin, Y.1    Chen, X.-M.2
  • 9
    • 0000495449 scopus 로고
    • A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
    • International Ballistics Committee, The Hague
    • Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, 1983. International Ballistics Committee, The Hague, pp 541-547
    • (1983) Proceedings of the 7th International Symposium on Ballistics, 1983 , pp. 541-547
    • Johnson, G.R.1    Cook, W.H.2
  • 10
    • 70449646154 scopus 로고    scopus 로고
    • A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel
    • 10.1016/j.commatsci.2009.09.025
    • Samantaray D, Mandal S, Bhaduri A (2009) A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel. Comput Mater Sci 47:568-576
    • (2009) Comput Mater Sci , vol.47 , pp. 568-576
    • Samantaray, D.1    Mandal, S.2    Bhaduri, A.3
  • 11
    • 79952190295 scopus 로고    scopus 로고
    • A critical comparison of various data processing methods in simple uni-axial compression testing
    • 10.1016/j.matdes.2011.01.007
    • Samantaray D, Mandal S, Bhaduri A (2011) A critical comparison of various data processing methods in simple uni-axial compression testing. Mater Des 32:2797-2802
    • (2011) Mater des , vol.32 , pp. 2797-2802
    • Samantaray, D.1    Mandal, S.2    Bhaduri, A.3
  • 12
    • 70349258261 scopus 로고    scopus 로고
    • A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel
    • 10.1016/j.msea.2009.08.009
    • Samantaray D, Mandal S, Borah U, Bhaduri A, Sivaprasad P (2009) A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater Sci Eng A 526:1-6
    • (2009) Mater Sci Eng A , vol.526 , pp. 1-6
    • Samantaray, D.1    Mandal, S.2    Borah, U.3    Bhaduri, A.4    Sivaprasad, P.5
  • 13
    • 33746947833 scopus 로고
    • Effect of strain rate upon plastic flow of steel
    • 10.1063/1.1707363
    • Zener C, Hollomon J (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22-32
    • (1944) J Appl Phys , vol.15 , pp. 22-32
    • Zener, C.1    Hollomon, J.2
  • 14
    • 0348107533 scopus 로고
    • Dislocation-mechanics-based constitutive relations for material dynamics calculations
    • 10.1063/1.338024
    • Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816-1825
    • (1987) J Appl Phys , vol.61 , pp. 1816-1825
    • Zerilli, F.J.1    Armstrong, R.W.2
  • 15
    • 79955036349 scopus 로고    scopus 로고
    • Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel
    • 10.1016/j.msea.2011.03.050
    • Xiao Y-H, Guo C (2011) Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Mater Sci Eng A 528:5081-5087
    • (2011) Mater Sci Eng A , vol.528 , pp. 5081-5087
    • Xiao, Y.-H.1    Guo, C.2
  • 16
    • 13144274688 scopus 로고    scopus 로고
    • Strain rate effects on the mechanical properties of a Fe-Mn-Al alloy under dynamic impact deformations
    • 10.1016/j.msea.2004.09.055
    • Chiou S-T, Cheng W-C, Lee W-S (2005) Strain rate effects on the mechanical properties of a Fe-Mn-Al alloy under dynamic impact deformations. Mater Sci Eng A 392:156-162
    • (2005) Mater Sci Eng A , vol.392 , pp. 156-162
    • Chiou, S.-T.1    Cheng, W.-C.2    Lee, W.-S.3
  • 17
    • 55649109830 scopus 로고    scopus 로고
    • A method to predict flow stress considering dynamic recrystallization during hot deformation
    • 10.1016/j.commatsci.2008.05.021
    • He X, Yu Z, Lai X (2008) A method to predict flow stress considering dynamic recrystallization during hot deformation. Comput Mater Sci 44:760-764
    • (2008) Comput Mater Sci , vol.44 , pp. 760-764
    • He, X.1    Yu, Z.2    Lai, X.3
  • 18
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • 10.1007/s10845-010-0415-2
    • Çaydaş U, Ekici S (2012) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J Intell Manuf 23:639-650
    • (2012) J Intell Manuf , vol.23 , pp. 639-650
    • Çaydaş, U.1    Ekici, S.2
  • 19
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • 10.1080/00207540802452132
    • Gupta AK (2010) Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 48:763-778
    • (2010) Int J Prod Res , vol.48 , pp. 763-778
    • Gupta, A.K.1
  • 20
    • 77957002117 scopus 로고    scopus 로고
    • Neural networks modelling and generalised predictive control for an autonomous underwater vehicle
    • 10.1504/IJMIC.2010.035282
    • Xu J, Zhang M, Wang Y (2010) Neural networks modelling and generalised predictive control for an autonomous underwater vehicle. Int J Model Identif Control 11:79-86
    • (2010) Int J Model Identif Control , vol.11 , pp. 79-86
    • Xu, J.1    Zhang, M.2    Wang, Y.3
  • 21
    • 84868506920 scopus 로고    scopus 로고
    • Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach
    • Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci Int J 220:399-407
    • (2013) Inf Sci Int J , vol.220 , pp. 399-407
    • Yildiz, A.R.1
  • 22
    • 84881660978 scopus 로고    scopus 로고
    • Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations
    • 10.1016/j.asoc.2012.01.012
    • Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433-1439
    • (2013) Appl Soft Comput , vol.13 , Issue.3 , pp. 1433-1439
    • Yildiz, A.R.1
  • 23
    • 84888298203 scopus 로고    scopus 로고
    • Performance evaluation of microbial fuel cell by artificial intelligence methods
    • 10.1016/j.eswa.2013.08.038
    • Garg A, Vijayaraghavan V, Mahapatra SS, Tai K, Wong CH (2014) Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst Appl 41(4):1389-1399
    • (2014) Expert Syst Appl , vol.41 , Issue.4 , pp. 1389-1399
    • Garg, A.1    Vijayaraghavan, V.2    Mahapatra, S.S.3    Tai, K.4    Wong, C.H.5
  • 24
    • 84893902026 scopus 로고    scopus 로고
    • Crack detection in a rotating shaft using artificial neural networks and PSD characterization
    • doi: 10.1007/s11012-013-9790-z
    • Mohammed AA et al (2013) Crack detection in a rotating shaft using artificial neural networks and PSD characterisation. Meccanica 1-12. doi: 10.1007/s11012-013-9790-z
    • (2013) Meccanica , pp. 1-12
    • Mohammed, A.A.1
  • 25
    • 84893951302 scopus 로고    scopus 로고
    • Rotor crack identification based on neural networks and modal data
    • doi: 10.1007/s11012-013-9795-7
    • Zapico-Valle JL et al (2013) Rotor crack identification based on neural networks and modal data. Meccanica 1-20. doi: 10.1007/s11012-013-9795-7
    • (2013) Meccanica , pp. 1-20
    • Zapico-Valle, J.L.1
  • 26
    • 84875834143 scopus 로고    scopus 로고
    • The worst response of mistuned bladed disk system using neural network and genetic algorithm
    • 10.1007/s11012-012-9607-5
    • Raeisi E, Ziaei-Rad S (2013) The worst response of mistuned bladed disk system using neural network and genetic algorithm. Meccanica 48(2):367-379
    • (2013) Meccanica , vol.48 , Issue.2 , pp. 367-379
    • Raeisi, E.1    Ziaei-Rad, S.2
  • 27
    • 84861821294 scopus 로고    scopus 로고
    • Regrasping objects during manipulation tasks by combining genetic algorithms and finger gaiting
    • 10.1007/s11012-011-9486-1 06280882
    • Fernandez A et al (2012) Regrasping objects during manipulation tasks by combining genetic algorithms and finger gaiting. Meccanica 47(4):939-950
    • (2012) Meccanica , vol.47 , Issue.4 , pp. 939-950
    • Fernandez, A.1
  • 28
    • 84861911828 scopus 로고    scopus 로고
    • Dynamics of a stainless steel turning process by statistical and recurrence analyses
    • 10.1007/s11012-011-9534-x
    • Litak G, Rusinek R (2012) Dynamics of a stainless steel turning process by statistical and recurrence analyses. Meccanica 47(6):1517-1526
    • (2012) Meccanica , vol.47 , Issue.6 , pp. 1517-1526
    • Litak, G.1    Rusinek, R.2
  • 29
    • 16744364998 scopus 로고    scopus 로고
    • Genetic programming approach for surface quality prediction
    • Kovacic M, Brezocnik M (2003) Genetic programming approach for surface quality prediction. Teh Vjesn 10:19-24
    • (2003) Teh Vjesn , vol.10 , pp. 19-24
    • Kovacic, M.1    Brezocnik, M.2
  • 30
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: An ensemble method
    • 10.1016/j.ins.2003.03.028
    • Zhang Y, Bhattacharyya S (2004) Genetic programming in classifying large-scale data: an ensemble method. Inf Sci 163:85-101
    • (2004) Inf Sci , vol.163 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2
  • 31
    • 0013485092 scopus 로고    scopus 로고
    • PhD Thesis, Department of Chemical and Process Engineering, University of Newcastle
    • Hiden HG (1998) Data-based modelling using genetic programming. PhD Thesis, Department of Chemical and Process Engineering, University of Newcastle
    • (1998) Data-based Modelling Using Genetic Programming.
    • Hiden, H.G.1
  • 33
    • 84866948628 scopus 로고    scopus 로고
    • Comparison of regression analysis. Artificial Neural Network and genetic programming in handling the multicollinearity problem
    • identification and control (ICMIC2012), Wuhan, China, 24-26 June 2012. IEEE, Piscataway, NJ
    • Garg A, Tai K (2012) Comparison of regression analysis, Artificial Neural Network and genetic programming in handling the multicollinearity problem. In: Proceedings of 2012 international conference on modelling, identification and control (ICMIC2012), Wuhan, China, 24-26 June 2012. IEEE, Piscataway, NJ, pp 353-358
    • (2012) Proceedings of 2012 International Conference on Modeling , pp. 353-358
    • Garg, A.1    Tai, K.2
  • 34
    • 84876995897 scopus 로고    scopus 로고
    • Comparison of statistical and machine learning methods in modelling of data with multicollinearity
    • Garg A, Tai K (2013) Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int J Model Identif Control 18(4):295-312
    • (2013) Int J Model Identif Control , vol.18 , Issue.4 , pp. 295-312
    • Garg, A.1    Tai, K.2
  • 36
    • 84911997374 scopus 로고    scopus 로고
    • A hybrid m5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process
    • 10.1007/s10845-013-0734-1
    • Garg A, Tai K, Lee CH, Savalani MM (2013) A hybrid m5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf. doi: 10.1007/s10845-013-0734-1
    • (2013) J Intell Manuf
    • Garg, A.1    Tai, K.2    Lee, C.H.3    Savalani, M.M.4
  • 38
    • 84885571970 scopus 로고    scopus 로고
    • Selection of a robust experimental design for the effective modeling of nonlinear systems using genetic programming
    • Singapore, 16-19 April 2013
    • Garg A, Tai K (2013) Selection of a robust experimental design for the effective modeling of nonlinear systems using genetic programming. In: Proceedings of 2013 IEEE symposium series on computational intelligence and data mining (CIDM), Singapore, 16-19 April 2013, pp 293-298
    • (2013) Proceedings of 2013 IEEE Symposium Series on Computational Intelligence and Data Mining (CIDM) , pp. 293-298
    • Garg, A.1    Tai, K.2
  • 39
    • 84887621431 scopus 로고    scopus 로고
    • Classification-driven model selection approach of genetic programming in modelling of turning process
    • 10.1007/s00170-013-5103-x
    • Garg A, Rachmawati L, Tai K (2013) Classification-driven model selection approach of genetic programming in modelling of turning process. Int J Adv Manuf Technol 69(5-8):1137-1151
    • (2013) Int J Adv Manuf Technol , vol.69 , Issue.5-8 , pp. 1137-1151
    • Garg, A.1    Rachmawati, L.2    Tai, K.3
  • 40
    • 84883578713 scopus 로고    scopus 로고
    • Review of empirical modeling techniques for modeling of turning process
    • 10.1504/IJMIC.2013.056184
    • Garg A, Bhalerao Y, Tai K (2013) Review of empirical modeling techniques for modeling of turning process. Int J Model Identif Control 20(2):121-129
    • (2013) Int J Model Identif Control , vol.20 , Issue.2 , pp. 121-129
    • Garg, A.1    Bhalerao, Y.2    Tai, K.3
  • 41
    • 84897878463 scopus 로고    scopus 로고
    • State-of-the-art in empirical modelling of rapid prototyping processes
    • (in press)
    • Garg A, Savalani MM, Tai K (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J (in press)
    • (2014) Rapid Prototyp J
    • Garg, A.1    Savalani, M.M.2    Tai, K.3
  • 42
    • 84867977956 scopus 로고    scopus 로고
    • Development of constitutive models for dynamic strain aging regime in austenitic stainless steel 304
    • 10.1016/j.matdes.2012.09.041
    • Gupta AK, Krishnamurthy HN, Singh Y, Prasad KM, Singh SK (2012) Development of constitutive models for dynamic strain aging regime in austenitic stainless steel 304. Mater Des 45:616-627
    • (2012) Mater des , vol.45 , pp. 616-627
    • Gupta, A.K.1    Krishnamurthy, H.N.2    Singh, Y.3    Prasad, K.M.4    Singh, S.K.5
  • 47
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • 10.1093/bioinformatics/17.8.721
    • Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721-728
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 49
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinform 2:67
    • (2003) Appl Bioinform , vol.2 , pp. 67
    • Byvatov, E.1    Schneider, G.2
  • 51
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • 10.1016/j.ijmachtools.2007.04.013
    • Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140-2152
    • (2007) Int J Mach Tools Manuf , vol.47 , pp. 2140-2152
    • Salgado, D.R.1    Alonso, F.J.2
  • 52
    • 67650000504 scopus 로고    scopus 로고
    • In-process surface roughness prediction system using cutting vibrations in turning
    • 10.1007/s00170-008-1698-8
    • Salgado DR, Alonso FJ, Cambero I, Marcelo A (2009) In-process surface roughness prediction system using cutting vibrations in turning. Int J Adv Manuf Technol 43:40-51
    • (2009) Int J Adv Manuf Technol , vol.43 , pp. 40-51
    • Salgado, D.R.1    Alonso, F.J.2    Cambero, I.3    Marcelo, A.4
  • 53
    • 1242338180 scopus 로고    scopus 로고
    • A canonical correlation neural network for multicollinearity and functional data
    • 10.1016/j.neunet.2003.07.002 1076.68550
    • Gou Z, Fyfe C (2004) A canonical correlation neural network for multicollinearity and functional data. Neural Netw 17:285-293
    • (2004) Neural Netw , vol.17 , pp. 285-293
    • Gou, Z.1    Fyfe, C.2
  • 54
    • 77955655257 scopus 로고    scopus 로고
    • Artificial neural networks to optimize the extrusion of an aluminium alloy
    • 10.1007/s10845-009-0239-0
    • Lucignano C, Montanari R, Tagliaferri V, Ucciardello N (2010) Artificial neural networks to optimize the extrusion of an aluminium alloy. J Intell Manuf 21:569-574
    • (2010) J Intell Manuf , vol.21 , pp. 569-574
    • Lucignano, C.1    Montanari, R.2    Tagliaferri, V.3    Ucciardello, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.