메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 589-595

Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network

Author keywords

A. Ferrous metals and alloys; E. Mechanical; F. Plastic behavior

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; CORRELATION COEFFICIENT; DYNAMIC STRAIN AGING; E. MECHANICAL; EXPERIMENTAL DATA; EXPERIMENTAL VALUES; F. PLASTIC BEHAVIOR; FERROUS METALS AND ALLOYS; FLOW STRESS BEHAVIOR; INPUT VARIABLES; NON-LINEAR RELATIONSHIPS; PERCENTAGE ERROR; SEMIEMPIRICAL MODELS; SERRATED FLOW; TESTING DATA; TRAINING DATA;

EID: 80155167207     PISSN: 02641275     EISSN: 18734197     Source Type: Journal    
DOI: 10.1016/j.matdes.2011.09.060     Document Type: Article
Times cited : (80)

References (22)
  • 1
    • 3242664599 scopus 로고    scopus 로고
    • Effect of dynamic strain aging on high temperature properties of austenitic stainless steel
    • Kaiping P., Kuangwu Q., Wenzhe C. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A 2004, 379:372-377.
    • (2004) Mater Sci Eng A , vol.379 , pp. 372-377
    • Kaiping, P.1    Kuangwu, Q.2    Wenzhe, C.3
  • 2
    • 33746556573 scopus 로고    scopus 로고
    • Dynamic strain ageing in prior cold worked 15Cr-15Ni titanium modified stainless steel (Alloy D9)
    • Samuel K.G., Ray S.K., Sasikala G. Dynamic strain ageing in prior cold worked 15Cr-15Ni titanium modified stainless steel (Alloy D9). J Nucl Mater 2006, 355(1-3):30-37.
    • (2006) J Nucl Mater , vol.355 , Issue.1-3 , pp. 30-37
    • Samuel, K.G.1    Ray, S.K.2    Sasikala, G.3
  • 3
    • 0024035447 scopus 로고
    • Strain aging effects on the cyclic behavior of austenitic stainless steels
    • Armas A.F., Bettin O.R., Alvarez-Armas I., Rubiolo G.H. Strain aging effects on the cyclic behavior of austenitic stainless steels. J Nucl Mater 1988, 155-157:644-649.
    • (1988) J Nucl Mater , pp. 644-649
    • Armas, A.F.1    Bettin, O.R.2    Alvarez-Armas, I.3    Rubiolo, G.H.4
  • 4
    • 56949103008 scopus 로고    scopus 로고
    • Influence of dynamic strain aging pre-treatment on creep-fatigue behaviour in 316L stainless steel
    • Jiang H., Chen X., Fan Z., Dong J., Jiang H., Lu S. Influence of dynamic strain aging pre-treatment on creep-fatigue behaviour in 316L stainless steel. Mater Sci Eng A 2009, 500(1-2):98-103.
    • (2009) Mater Sci Eng A , vol.500 , Issue.1-2 , pp. 98-103
    • Jiang, H.1    Chen, X.2    Fan, Z.3    Dong, J.4    Jiang, H.5    Lu, S.6
  • 5
    • 1542574226 scopus 로고    scopus 로고
    • Analysis of Portevin-Le Chatelier serrations of type Bin Al-Mg
    • Klose F.B., Ziegenbein A. Analysis of Portevin-Le Chatelier serrations of type Bin Al-Mg. Mater Sci Eng A 2004, 369:76-81.
    • (2004) Mater Sci Eng A , vol.369 , pp. 76-81
    • Klose, F.B.1    Ziegenbein, A.2
  • 6
    • 0037570989 scopus 로고    scopus 로고
    • Serrated flow of aluminum alloys influenced by precipitates
    • Pink E., Kumar S. Serrated flow of aluminum alloys influenced by precipitates. Mater Sci Eng A 2000, 280:17-24.
    • (2000) Mater Sci Eng A , vol.280 , pp. 17-24
    • Pink, E.1    Kumar, S.2
  • 8
    • 0001266887 scopus 로고
    • Characterization of hot deformation behavior of Zr-2.5Nb-0.5Cu using processing maps
    • Chakravarty J.K., Dey G.K., Banerjee S., Prasad Y.V.R.K. Characterization of hot deformation behavior of Zr-2.5Nb-0.5Cu using processing maps. J Nucl Mater 1995, 218(2):247-255.
    • (1995) J Nucl Mater , vol.218 , Issue.2 , pp. 247-255
    • Chakravarty, J.K.1    Dey, G.K.2    Banerjee, S.3    Prasad, Y.V.R.K.4
  • 9
    • 0027000965 scopus 로고
    • New method for determining sinh constitutive constants for high temperature deformation of 300 austenitic steels
    • Cingara A., McQueen H.J. New method for determining sinh constitutive constants for high temperature deformation of 300 austenitic steels. J Mater Process Technol 1992, 36:17-30.
    • (1992) J Mater Process Technol , vol.36 , pp. 17-30
    • Cingara, A.1    McQueen, H.J.2
  • 10
    • 51249171184 scopus 로고
    • Prediction of steel flow stresses at high temperatures and strain rates
    • Laasraoui A., Jonas J.J. Prediction of steel flow stresses at high temperatures and strain rates. Metall Trans A 1991, 22:1545-1558.
    • (1991) Metall Trans A , vol.22 , pp. 1545-1558
    • Laasraoui, A.1    Jonas, J.J.2
  • 11
    • 76649095338 scopus 로고    scopus 로고
    • Modified Johnson-Cook material flow model for hot deformation processing
    • Maheshwari A.K., Pathak K.K., Ramakrishnan N., Narayan S.P. Modified Johnson-Cook material flow model for hot deformation processing. J Mater Sci 2010, 45(4):859-864.
    • (2010) J Mater Sci , vol.45 , Issue.4 , pp. 859-864
    • Maheshwari, A.K.1    Pathak, K.K.2    Ramakrishnan, N.3    Narayan, S.P.4
  • 12
    • 0345359456 scopus 로고    scopus 로고
    • Modeling the correlation between processing parameters and properties of maraging steels using artificial neural network
    • Guo Z., Sha W. Modeling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput Mater Sci 2004, 29:12-28.
    • (2004) Comput Mater Sci , vol.29 , pp. 12-28
    • Guo, Z.1    Sha, W.2
  • 13
    • 0034921649 scopus 로고    scopus 로고
    • Modeling the correlation between processing and properties in titanium alloys using artificial neural network
    • Malinov S., Sha W., Mckeown J.J. Modeling the correlation between processing and properties in titanium alloys using artificial neural network. Comput Mater Sci 2001, 21:375-394.
    • (2001) Comput Mater Sci , vol.21 , pp. 375-394
    • Malinov, S.1    Sha, W.2    Mckeown, J.J.3
  • 14
    • 77950948549 scopus 로고    scopus 로고
    • Development of constitutive relationship model of Ti600 alloy using artificial neural network
    • Sun Y., Zeng W.D., Zhao Y.Q., et al. Development of constitutive relationship model of Ti600 alloy using artificial neural network. Comput Mater Sci 2010, 48:686-691.
    • (2010) Comput Mater Sci , vol.48 , pp. 686-691
    • Sun, Y.1    Zeng, W.D.2    Zhao, Y.Q.3
  • 15
    • 2342514223 scopus 로고    scopus 로고
    • Neural network prediction of flow stress of Ti-15-3 alloy under hot compression
    • Li P., Xue K.M., Lu Y., Tan J.R. Neural network prediction of flow stress of Ti-15-3 alloy under hot compression. J Mater Process Technol 2004, 148:235-238.
    • (2004) J Mater Process Technol , vol.148 , pp. 235-238
    • Li, P.1    Xue, K.M.2    Lu, Y.3    Tan, J.R.4
  • 16
    • 43349085769 scopus 로고    scopus 로고
    • High temperature deformation behavior of Ti-6Al-4V alloy with and equiaxed microstructure: a neural networks analysis
    • Reddy N.S., Lee Y.H., Kim J.H., Lee C.S. High temperature deformation behavior of Ti-6Al-4V alloy with and equiaxed microstructure: a neural networks analysis. Met Mater Int 2008, 14(2):213-221.
    • (2008) Met Mater Int , vol.14 , Issue.2 , pp. 213-221
    • Reddy, N.S.1    Lee, Y.H.2    Kim, J.H.3    Lee, C.S.4
  • 17
    • 47249131718 scopus 로고    scopus 로고
    • Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed a+b microstructure by artificial neural networks
    • Reddy N.S., Lee Y.H., Parka C.H., Lee C.S. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed a+b microstructure by artificial neural networks. Mater Sci Eng A 2008, 492:276-282.
    • (2008) Mater Sci Eng A , vol.492 , pp. 276-282
    • Reddy, N.S.1    Lee, Y.H.2    Parka, C.H.3    Lee, C.S.4
  • 18
    • 26444494069 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu
    • Kapoor R., Pal D., Chakravarty J.K. Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu. J Mater Process Technol 2005, 169:199-205.
    • (2005) J Mater Process Technol , vol.169 , pp. 199-205
    • Kapoor, R.1    Pal, D.2    Chakravarty, J.K.3
  • 19
    • 76549136781 scopus 로고    scopus 로고
    • Prediction of mechanical properties of extra deep drawn steel in blue brittle region using artificial neural network
    • Singh S.K., Gupta A.K. Prediction of mechanical properties of extra deep drawn steel in blue brittle region using artificial neural network. Mater Des 2010, 31:2288-2295.
    • (2010) Mater Des , vol.31 , pp. 2288-2295
    • Singh, S.K.1    Gupta, A.K.2
  • 20
    • 36549061948 scopus 로고    scopus 로고
    • Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect
    • Sheikh H., Serajzadeh S. Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect. J Mater Process Technol 2008, 196:115-119.
    • (2008) J Mater Process Technol , vol.196 , pp. 115-119
    • Sheikh, H.1    Serajzadeh, S.2
  • 21
    • 78649451982 scopus 로고    scopus 로고
    • A study on the extent of ironing of EDD steel at elevated temperature
    • Singh S.K., Gupta A.K., Mahesh K. A study on the extent of ironing of EDD steel at elevated temperature. CIRP J Manuf Sci Technol 2010, 3(1):73-79.
    • (2010) CIRP J Manuf Sci Technol , vol.3 , Issue.1 , pp. 73-79
    • Singh, S.K.1    Gupta, A.K.2    Mahesh, K.3
  • 22
    • 77953540913 scopus 로고    scopus 로고
    • Understanding formability of EDD steel at elevated temperatures using finite element simulation
    • Singh S.K., Swathi M., Kumar A., Mahesh K. Understanding formability of EDD steel at elevated temperatures using finite element simulation. Mater Des 2010, 31:4478-4484.
    • (2010) Mater Des , vol.31 , pp. 4478-4484
    • Singh, S.K.1    Swathi, M.2    Kumar, A.3    Mahesh, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.