메뉴 건너뛰기




Volumn 8, Issue 1, 2014, Pages

An algebra-based method for inferring gene regulatory networks

Author keywords

algebraic dynamic models; Boolean networks; data noise; DNA microarray data; evolutionary computation; gene regulatory networks; molecular networks; network inference; polynomial dynamical systems; Reverse engineering; time series data

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; GENE INACTIVATION; GENE REGULATORY NETWORK; METHODOLOGY; REPRODUCIBILITY; RNA INTERFERENCE; SYSTEMS BIOLOGY;

EID: 84899537058     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-8-37     Document Type: Article
Times cited : (29)

References (70)
  • 1
    • 43049129993 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the boolean network odel
    • Springer Netherlands Publishers
    • Lahdesmaki H, Shmulevich I. On learning gene regulatory networks under the boolean network odel. Machine Learn 2008, 71:185-217. Springer Netherlands Publishers.
    • (2008) Machine Learn , vol.71 , pp. 185-217
    • Lahdesmaki, H.1    Shmulevich, I.2
  • 2
    • 84865534080 scopus 로고    scopus 로고
    • An integer optimization algorithm for robust identification of non-linear gene regulatory networks
    • Chemmangattuvalappil N, Task K, Banerjee I. An integer optimization algorithm for robust identification of non-linear gene regulatory networks. BMC Syst Biol 2013, 2(6):119.
    • (2013) BMC Syst Biol , vol.2 , Issue.6 , pp. 119
    • Chemmangattuvalappil, N.1    Task, K.2    Banerjee, I.3
  • 3
    • 54249124501 scopus 로고    scopus 로고
    • Learning biological networks: from modules to dynamics
    • 10.1038/nchembio.122, 18936750
    • Bonneau R. Learning biological networks: from modules to dynamics. Nat Chem Biol 2008, 4(11):658-664. 10.1038/nchembio.122, 18936750.
    • (2008) Nat Chem Biol , vol.4 , Issue.11 , pp. 658-664
    • Bonneau, R.1
  • 4
    • 3042799574 scopus 로고    scopus 로고
    • A computational algebra approach to the reverse-engineering of gene regulatory networks
    • 10.1016/j.jtbi.2004.04.037, 15246788
    • Laubenbacher R, Stigler B. A computational algebra approach to the reverse-engineering of gene regulatory networks. J Theor Biol 2004, 229:523-537. 10.1016/j.jtbi.2004.04.037, 15246788.
    • (2004) J Theor Biol , vol.229 , pp. 523-537
    • Laubenbacher, R.1    Stigler, B.2
  • 5
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
    • Madar A, Greenfield A. DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2004, 5(3):9803.
    • (2004) PLoS One , vol.5 , Issue.3 , pp. 9803
    • Madar, A.1    Greenfield, A.2
  • 6
    • 77952791626 scopus 로고    scopus 로고
    • Identification of genetic network dynamics with unate structure
    • 10.1093/bioinformatics/btq120, 20305266
    • Porreca R, Cinquemani E, Lygeros J, Ferrari-Trecate G. Identification of genetic network dynamics with unate structure. Bioinformatics 2010, 26(9):1239-12345. 10.1093/bioinformatics/btq120, 20305266.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1239-12345
    • Porreca, R.1    Cinquemani, E.2    Lygeros, J.3    Ferrari-Trecate, G.4
  • 7
    • 79960564239 scopus 로고    scopus 로고
    • Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study
    • 10.1186/1471-2105-12-292, 3161045, 21771321
    • Hempel S, Koseska A, Nikoloski Z, Kurths J. Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study. BMC Bioinformatics 2011, 12:292. 10.1186/1471-2105-12-292, 3161045, 21771321.
    • (2011) BMC Bioinformatics , vol.12 , pp. 292
    • Hempel, S.1    Koseska, A.2    Nikoloski, Z.3    Kurths, J.4
  • 8
    • 0021632768 scopus 로고
    • Prior information and ambiguity in inverse problems
    • Jaynes E. Prior information and ambiguity in inverse problems. SIAM AMS Proc 1984, 14:151-166.
    • (1984) SIAM AMS Proc , vol.14 , pp. 151-166
    • Jaynes, E.1
  • 9
    • 0034791625 scopus 로고    scopus 로고
    • Modeling genetic regulatory dynamics in neural development
    • 10.1089/106652701752236223, 11571076
    • Wahde M, Hertz J. Modeling genetic regulatory dynamics in neural development. J Comput Biol 2001, 8:429-442. 10.1089/106652701752236223, 11571076.
    • (2001) J Comput Biol , vol.8 , pp. 429-442
    • Wahde, M.1    Hertz, J.2
  • 10
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • 10.1073/pnas.092576199, 122920, 11983907
    • Yeung MKS, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 2002, 99(9):6163-6168. 10.1073/pnas.092576199, 122920, 11983907.
    • (2002) Proc Natl Acad Sci , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.S.1    Tegner, J.2    Collins, J.J.3
  • 11
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • 10.1126/science.1081900, 12843395
    • Gardner TS, di Bernardo DX, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105. 10.1126/science.1081900, 12843395.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.X.2    Collins, J.J.3
  • 14
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • 10.1371/journal.pone.0013397, 2963605, 21049040
    • Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 2010, 5(10):e13397. 10.1371/journal.pone.0013397, 2963605, 21049040.
    • (2010) PLoS ONE , vol.5 , Issue.10
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 15
    • 84864946487 scopus 로고    scopus 로고
    • (2012). Integrating external biological knowledge in the construction of regulatory networks from time-series expression data
    • 10.1186/1752-0509-6-101, 3465231, 22898396
    • Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, Yeung KY. (2012). Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Syst Biol 2012, 6:101. 10.1186/1752-0509-6-101, 3465231, 22898396.
    • (2012) BMC Syst Biol , vol.6 , pp. 101
    • Lo, K.1    Raftery, A.E.2    Dombek, K.M.3    Zhu, J.4    Schadt, E.E.5    Bumgarner, R.E.6    Yeung, K.Y.7
  • 16
    • 84875814497 scopus 로고    scopus 로고
    • Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge
    • Wang SQ, Li HX. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC Syst Biol 2012, 6(Suppl 1):S3.
    • (2012) BMC Syst Biol , vol.6 , Issue.Suppl 1
    • Wang, S.Q.1    Li, H.X.2
  • 17
    • 34447342269 scopus 로고    scopus 로고
    • The impact of function perturbations in Boolean networks
    • 10.1093/bioinformatics/btm093, 17379691
    • Xiao Y, Dougherty E. The impact of function perturbations in Boolean networks. Bioinformatics 2007, 23(10):1265-1273. 10.1093/bioinformatics/btm093, 17379691.
    • (2007) Bioinformatics , vol.23 , Issue.10 , pp. 1265-1273
    • Xiao, Y.1    Dougherty, E.2
  • 18
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • 10.1093/bioinformatics/bth448, 15284094
    • Yu J, Smith J, Hartemink A, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20(18):3594-3603. 10.1093/bioinformatics/bth448, 15284094.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, J.2    Hartemink, A.3    Jarvis, E.D.4
  • 20
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961, 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620. 10.1089/106652700750050961, 11108481.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 21
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks
    • 10.1093/bioinformatics/18.2.261, 11847074
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274. 10.1093/bioinformatics/18.2.261, 11847074.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 22
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
    • Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.Suppl 5
    • Ferrazzi, F.1    Sebastiani, P.2    Ramoni, M.3    Bellazzi, R.4
  • 23
    • 43849084374 scopus 로고    scopus 로고
    • Inferring connectivity of genetic regulatory networks using information-theoretic criteria
    • Zhao W, Serpedin E, Dougherty ER. Inferring connectivity of genetic regulatory networks using information-theoretic criteria. Comput Biol and Bioinformatics, IEEE/ACM Trans 2008, 5(2):262-274.
    • (2008) Comput Biol and Bioinformatics, IEEE/ACM Trans , vol.5 , Issue.2 , pp. 262-274
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 24
    • 42249112818 scopus 로고    scopus 로고
    • Petri net modelling of biological regulatory networks
    • Chaouiya C, Remy E, Thieffry D. Petri net modelling of biological regulatory networks. Jo Discrete Algo 2008, 6(2):165-177.
    • (2008) Jo Discrete Algo , vol.6 , Issue.2 , pp. 165-177
    • Chaouiya, C.1    Remy, E.2    Thieffry, D.3
  • 27
    • 35449002487 scopus 로고    scopus 로고
    • Inferring gene regulatory networks by integrating static and dynamic data
    • Ferrazzi F, Magni P, Sacchi L, Nuzzo A, Petrovic U, Bellazzi R. Inferring gene regulatory networks by integrating static and dynamic data. Int J Med Info 2007, 76(Supplement 3):S462-S475.
    • (2007) Int J Med Info , vol.76 , Issue.SUPPL. 3
    • Ferrazzi, F.1    Magni, P.2    Sacchi, L.3    Nuzzo, A.4    Petrovic, U.5    Bellazzi, R.6
  • 28
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • 10.1016/j.neunet.2007.07.002, 17714912
    • Xu R, Venayagamoorthy GK, Donald C, Wunsch I. Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 2007, 20(8):917-927. 10.1016/j.neunet.2007.07.002, 17714912.
    • (2007) Neural Netw , vol.20 , Issue.8 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Donald, C.3    Wunsch, I.4
  • 29
    • 38649104174 scopus 로고    scopus 로고
    • A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
    • Lee WP, Yang KC. A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputation 2008, 71:600-610.
    • (2008) Neurocomputation , vol.71 , pp. 600-610
    • Lee, W.P.1    Yang, K.C.2
  • 30
    • 60149094488 scopus 로고    scopus 로고
    • A divide-and-conquer approach to analyze underdetermined biochemical models
    • 10.1093/bioinformatics/btp004, 19126574
    • Kotte O, Heinemann M. A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 2009, 25(4):519-525. 10.1093/bioinformatics/btp004, 19126574.
    • (2009) Bioinformatics , vol.25 , Issue.4 , pp. 519-525
    • Kotte, O.1    Heinemann, M.2
  • 31
    • 67649230197 scopus 로고    scopus 로고
    • Optimizing static thermodynamic models of transcriptional regulation
    • 10.1093/bioinformatics/btp283, 2732318, 19398449
    • Bauer DC, Bailey TL. Optimizing static thermodynamic models of transcriptional regulation. Bioinformatics 2009, 25(13):1640-1646. 10.1093/bioinformatics/btp283, 2732318, 19398449.
    • (2009) Bioinformatics , vol.25 , Issue.13 , pp. 1640-1646
    • Bauer, D.C.1    Bailey, T.L.2
  • 32
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: trustful inference of gene regulation using stability selection
    • 10.1186/1752-0509-6-145, 3598250, 23173819
    • Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst Biol 2012, 6(1):145. 10.1186/1752-0509-6-145, 3598250, 23173819.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 33
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann New York Acad Sci 2007, 1115:1-22.
    • (2007) Ann New York Acad Sci , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 34
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 challenges: a community effort to assess biological network inference
    • Stolovitzky G, Prill RJ, Califano A. Lessons from the DREAM2 challenges: a community effort to assess biological network inference. Ann New York Acad Sci 2009, 1158(37):159-195.
    • (2009) Ann New York Acad Sci , vol.1158 , Issue.37 , pp. 159-195
    • Stolovitzky, G.1    Prill, R.J.2    Califano, A.3
  • 38
    • 79952181848 scopus 로고    scopus 로고
    • Polynomial dynamical systems in systems biology
    • American Mathematical Society, Providence, RI,, Laubenbacher R
    • Stigler B. Polynomial dynamical systems in systems biology. AMS 2006 Proceedings of Symposia in Applied Mathematics 2006, 59-84. American Mathematical Society, Providence, RI,, Laubenbacher R.
    • (2006) AMS 2006 Proceedings of Symposia in Applied Mathematics , pp. 59-84
    • Stigler, B.1
  • 40
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • 10.1016/S0022-5193(03)00035-3, 12782112
    • Albert R, Othmer H. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1-18. 10.1016/S0022-5193(03)00035-3, 12782112.
    • (2003) J Theor Biol , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.2
  • 41
    • 58049164511 scopus 로고    scopus 로고
    • Boolean network simulations for life scientists
    • 10.1186/1751-0473-3-16, 2603008, 19014577
    • Albert I, Thakar J, Li S, Zhang R, Albert R. Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. 10.1186/1751-0473-3-16, 2603008, 19014577.
    • (2008) Source Code Biol Med , vol.3 , pp. 16
    • Albert, I.1    Thakar, J.2    Li, S.3    Zhang, R.4    Albert, R.5
  • 42
    • 67749106610 scopus 로고    scopus 로고
    • Synchronous and stochastic patterns of gene activation in the drosophila embryo
    • 10.1126/science.1173976, 19628867
    • Boettiger AN, Levine M. Synchronous and stochastic patterns of gene activation in the drosophila embryo. Science 2009, 325:471-473. 10.1126/science.1173976, 19628867.
    • (2009) Science , vol.325 , pp. 471-473
    • Boettiger, A.N.1    Levine, M.2
  • 43
    • 63049103158 scopus 로고    scopus 로고
    • Synchronous gene expression of the Yersinia enterocolitica Ysa Type III secretion system and its effectors
    • 10.1128/JB.01402-08, 2648357, 19124573
    • Walker KA, Miller VL. Synchronous gene expression of the Yersinia enterocolitica Ysa Type III secretion system and its effectors. J Bacteriol 2009, 191(6):1816-1826. 10.1128/JB.01402-08, 2648357, 19124573.
    • (2009) J Bacteriol , vol.191 , Issue.6 , pp. 1816-1826
    • Walker, K.A.1    Miller, V.L.2
  • 44
    • 58149358972 scopus 로고    scopus 로고
    • Dynamical modeling of the cholesterol regulatory pathway with Boolean networks
    • Kervizic G, Corcos L. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks. IBMC Syst Biol 2008, 2:99.
    • (2008) IBMC Syst Biol , vol.2 , pp. 99
    • Kervizic, G.1    Corcos, L.2
  • 45
    • 18844380444 scopus 로고    scopus 로고
    • Robustness and fragility of Boolean models for genetic regulatory networks
    • 10.1016/j.jtbi.2005.01.023, 15882705
    • Chaves M, Albert R, Sontag ED. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235(3):431-449. 10.1016/j.jtbi.2005.01.023, 15882705.
    • (2005) J Theor Biol , vol.235 , Issue.3 , pp. 431-449
    • Chaves, M.1    Albert, R.2    Sontag, E.D.3
  • 46
    • 34547480306 scopus 로고    scopus 로고
    • An Efficient method for dynamic analysis of gene regulatory networks
    • Springer-Verlag Berlin, Heidelberg, Speed T, Huang H
    • Garg A, Xenarios I, Mendoza L, DeMicheli G. An Efficient method for dynamic analysis of gene regulatory networks. RECOMB 2007 2007, 62-76. Springer-Verlag Berlin, Heidelberg, Speed T, Huang H.
    • (2007) RECOMB 2007 , pp. 62-76
    • Garg, A.1    Xenarios, I.2    Mendoza, L.3    DeMicheli, G.4
  • 47
    • 0038286479 scopus 로고    scopus 로고
    • The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases
    • Babson E
    • Onn S, Thomas R., Babson E The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Adv Appl Math 2003, 30:529-544. Babson E.
    • (2003) Adv Appl Math , vol.30 , pp. 529-544
    • Onn, S.1    Thomas, R.2
  • 49
    • 84855538784 scopus 로고    scopus 로고
    • Introduction to Evolutionary Computation
    • Institute of Physics Publishing Bristol and Philadelphia: Philadelphia, PA, Back T, Fogel DB, Michalewicz Z
    • Fogel DB. Introduction to Evolutionary Computation. Evolutionary Computation 1: Basic Algorithms and Operators 2000, 1-3. Institute of Physics Publishing Bristol and Philadelphia: Philadelphia, PA, Back T, Fogel DB, Michalewicz Z.
    • (2000) Evolutionary Computation 1: Basic Algorithms and Operators , pp. 1-3
    • Fogel, D.B.1
  • 50
    • 85081802932 scopus 로고    scopus 로고
    • Gene regulatory network modelling with evolutionary algorithms -an integrative approach
    • Dublin City University, 2011
    • Sirbu A. Gene regulatory network modelling with evolutionary algorithms -an integrative approach. PhD thesis Dublin City University, 2011.
    • PhD thesis
    • Sirbu, A.1
  • 51
    • 33947107404 scopus 로고    scopus 로고
    • Evolutionary computation in bioinformatics: a review. Systems, Man, and Cybernetics, Part C: Applications and Reviews
    • Pal S, Bandyopadhyay S, Ray S. Evolutionary computation in bioinformatics: a review. Systems, Man, and Cybernetics, Part C: Applications and Reviews. IEEE Trans 2006, 36(5):601-615.
    • (2006) IEEE Trans , vol.36 , Issue.5 , pp. 601-615
    • Pal, S.1    Bandyopadhyay, S.2    Ray, S.3
  • 53
    • 77649176945 scopus 로고    scopus 로고
    • Comparison of evolutionary algorithms in gene regulatory network model inference
    • 10.1186/1471-2105-11-59, 2831005, 20105328
    • Sirbu A, Ruskin HJ, Crane M. Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 2010, 11:59. 10.1186/1471-2105-11-59, 2831005, 20105328.
    • (2010) BMC Bioinformatics , vol.11 , pp. 59
    • Sirbu, A.1    Ruskin, H.J.2    Crane, M.3
  • 55
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978, 6(2):461-466.
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-466
    • Schwarz, G.1
  • 56
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Budapest: Akademiai Kiado, Petrov BN, Csaki F
    • Akaike H. Information theory and an extension of the maximum likelihood principle. Proc 2nd Int Symp Information Theory 1973, 267-281. Budapest: Akademiai Kiado, Petrov BN, Csaki F.
    • (1973) Proc 2nd Int Symp Information Theory , pp. 267-281
    • Akaike, H.1
  • 57
    • 0037212955 scopus 로고    scopus 로고
    • On latin hypercube sampling for structural reliability analysis
    • Olsson G, Sandberg A, Dahlblom O. On latin hypercube sampling for structural reliability analysis. Struct Safety 2003, 25(1):47-68.
    • (2003) Struct Safety , vol.25 , Issue.1 , pp. 47-68
    • Olsson, G.1    Sandberg, A.2    Dahlblom, O.3
  • 59
    • 16344385431 scopus 로고    scopus 로고
    • Evolutionary optimization with data collocation for reverse engineering of biological networks
    • 10.1093/bioinformatics/bti099, 15513993
    • Tsai KY, Wang FS. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 2005, 21(7):1180-1188. 10.1093/bioinformatics/bti099, 15513993.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1180-1188
    • Tsai, K.Y.1    Wang, F.S.2
  • 60
    • 30344481405 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks using evolutionary algorithms and grid computing
    • Swain M, Hunniford E. Reverse engineering gene regulatory networks using evolutionary algorithms and grid computing. Clinical Monitoring Comput 2005, 19:329-337.
    • (2005) Clinical Monitoring Comput , vol.19 , pp. 329-337
    • Swain, M.1    Hunniford, E.2
  • 61
    • 67650126034 scopus 로고    scopus 로고
    • Bayesian gene regulatory network inference optimization by means of genetic algorithms
    • Bevilacqua V, Mastronardi G. Bayesian gene regulatory network inference optimization by means of genetic algorithms. J Universal Comput Sci 2009, 15(4):826-839.
    • (2009) J Universal Comput Sci , vol.15 , Issue.4 , pp. 826-839
    • Bevilacqua, V.1    Mastronardi, G.2
  • 62
    • 84055213451 scopus 로고    scopus 로고
    • Reverse engineering of molecular networks from a common combinatorial approach
    • New York: Wiley, Eiloumi M, Zomaya AY
    • Dasgupta B, Vera-Licona P, Sontag E. Reverse engineering of molecular networks from a common combinatorial approach. Algorithms in Computational Molecular Biology 2011, New York: Wiley, Eiloumi M, Zomaya AY.
    • (2011) Algorithms in Computational Molecular Biology
    • Dasgupta, B.1    Vera-Licona, P.2    Sontag, E.3
  • 63
    • 77954916938 scopus 로고    scopus 로고
    • Discretization of time series data
    • 10.1089/cmb.2008.0023, 3203514, 20583929
    • Dimitrova E, Vera-Licona P, McGee J, Laubenbacher R. Discretization of time series data. J Comput Biol 2010, 17(6):853-868. 10.1089/cmb.2008.0023, 3203514, 20583929.
    • (2010) J Comput Biol , vol.17 , Issue.6 , pp. 853-868
    • Dimitrova, E.1    Vera-Licona, P.2    McGee, J.3    Laubenbacher, R.4
  • 64
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • 10.1186/1471-2105-11-154, 2862045, 20338053
    • Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154. 10.1186/1471-2105-11-154, 2862045, 20338053.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 65
    • 77954368891 scopus 로고    scopus 로고
    • Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach
    • 10.1186/1471-2105-11-337, 2897832, 20565962
    • Zou C, Ladroue C, Guo S, Feng J. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach. BMC Bioinformatics 2010, 11:337. 10.1186/1471-2105-11-337, 2897832, 20565962.
    • (2010) BMC Bioinformatics , vol.11 , pp. 337
    • Zou, C.1    Ladroue, C.2    Guo, S.3    Feng, J.4
  • 66
    • 78649781257 scopus 로고    scopus 로고
    • Functional data analysis for identifying nonlinear models of gene regulatory networks
    • Summer G, Perkins T. Functional data analysis for identifying nonlinear models of gene regulatory networks. BMC Genomics 2011, 11(Suppl 4):S18.
    • (2011) BMC Genomics , vol.11 , Issue.Suppl 4
    • Summer, G.1    Perkins, T.2
  • 67
    • 34548388925 scopus 로고    scopus 로고
    • Inference of gene networks from temporal gene expression profiles
    • 10.1049/iet-syb:20060079, 17907680
    • Bansal M, di Bernardo D. Inference of gene networks from temporal gene expression profiles. IET, Syst Biol 2007, 1:306-312. 10.1049/iet-syb:20060079, 17907680.
    • (2007) IET, Syst Biol , vol.1 , pp. 306-312
    • Bansal, M.1    di Bernardo, D.2
  • 68
    • 33646197928 scopus 로고    scopus 로고
    • Rosetta error model for gene expression analysis
    • 10.1093/bioinformatics/btl045, 16522673
    • Weng L, Dai H, Zhan Y, He Y, Stepaniants S, Bassett D. Rosetta error model for gene expression analysis. Bioinformatics 2006, 22(9):1111-1121. 10.1093/bioinformatics/btl045, 16522673.
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1111-1121
    • Weng, L.1    Dai, H.2    Zhan, Y.3    He, Y.4    Stepaniants, S.5    Bassett, D.6
  • 69
    • 34248177279 scopus 로고    scopus 로고
    • How high is the level of technical noise in microarray data
    • 10.1186/1745-6150-2-9, 1855048, 17428341
    • Klebanov L, Yakovlev A. How high is the level of technical noise in microarray data. Biology Direct 2007, 2:9-15. 10.1186/1745-6150-2-9, 1855048, 17428341.
    • (2007) Biology Direct , vol.2 , pp. 9-15
    • Klebanov, L.1    Yakovlev, A.2
  • 70
    • 38349088960 scopus 로고    scopus 로고
    • Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data
    • 10.1186/1471-2105-8-412, 2204045, 17961233
    • Chen J, Hsueh H, Delongchamp R, Lin C, Tsai C. Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 2007, 8:412-418. 10.1186/1471-2105-8-412, 2204045, 17961233.
    • (2007) BMC Bioinformatics , vol.8 , pp. 412-418
    • Chen, J.1    Hsueh, H.2    Delongchamp, R.3    Lin, C.4    Tsai, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.