-
1
-
-
43049129993
-
On learning gene regulatory networks under the boolean network odel
-
Springer Netherlands Publishers
-
Lahdesmaki H, Shmulevich I. On learning gene regulatory networks under the boolean network odel. Machine Learn 2008, 71:185-217. Springer Netherlands Publishers.
-
(2008)
Machine Learn
, vol.71
, pp. 185-217
-
-
Lahdesmaki, H.1
Shmulevich, I.2
-
2
-
-
84865534080
-
An integer optimization algorithm for robust identification of non-linear gene regulatory networks
-
Chemmangattuvalappil N, Task K, Banerjee I. An integer optimization algorithm for robust identification of non-linear gene regulatory networks. BMC Syst Biol 2013, 2(6):119.
-
(2013)
BMC Syst Biol
, vol.2
, Issue.6
, pp. 119
-
-
Chemmangattuvalappil, N.1
Task, K.2
Banerjee, I.3
-
3
-
-
54249124501
-
Learning biological networks: from modules to dynamics
-
10.1038/nchembio.122, 18936750
-
Bonneau R. Learning biological networks: from modules to dynamics. Nat Chem Biol 2008, 4(11):658-664. 10.1038/nchembio.122, 18936750.
-
(2008)
Nat Chem Biol
, vol.4
, Issue.11
, pp. 658-664
-
-
Bonneau, R.1
-
4
-
-
3042799574
-
A computational algebra approach to the reverse-engineering of gene regulatory networks
-
10.1016/j.jtbi.2004.04.037, 15246788
-
Laubenbacher R, Stigler B. A computational algebra approach to the reverse-engineering of gene regulatory networks. J Theor Biol 2004, 229:523-537. 10.1016/j.jtbi.2004.04.037, 15246788.
-
(2004)
J Theor Biol
, vol.229
, pp. 523-537
-
-
Laubenbacher, R.1
Stigler, B.2
-
5
-
-
78149461178
-
DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
-
Madar A, Greenfield A. DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2004, 5(3):9803.
-
(2004)
PLoS One
, vol.5
, Issue.3
, pp. 9803
-
-
Madar, A.1
Greenfield, A.2
-
6
-
-
77952791626
-
Identification of genetic network dynamics with unate structure
-
10.1093/bioinformatics/btq120, 20305266
-
Porreca R, Cinquemani E, Lygeros J, Ferrari-Trecate G. Identification of genetic network dynamics with unate structure. Bioinformatics 2010, 26(9):1239-12345. 10.1093/bioinformatics/btq120, 20305266.
-
(2010)
Bioinformatics
, vol.26
, Issue.9
, pp. 1239-12345
-
-
Porreca, R.1
Cinquemani, E.2
Lygeros, J.3
Ferrari-Trecate, G.4
-
7
-
-
79960564239
-
Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study
-
10.1186/1471-2105-12-292, 3161045, 21771321
-
Hempel S, Koseska A, Nikoloski Z, Kurths J. Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study. BMC Bioinformatics 2011, 12:292. 10.1186/1471-2105-12-292, 3161045, 21771321.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 292
-
-
Hempel, S.1
Koseska, A.2
Nikoloski, Z.3
Kurths, J.4
-
8
-
-
0021632768
-
Prior information and ambiguity in inverse problems
-
Jaynes E. Prior information and ambiguity in inverse problems. SIAM AMS Proc 1984, 14:151-166.
-
(1984)
SIAM AMS Proc
, vol.14
, pp. 151-166
-
-
Jaynes, E.1
-
9
-
-
0034791625
-
Modeling genetic regulatory dynamics in neural development
-
10.1089/106652701752236223, 11571076
-
Wahde M, Hertz J. Modeling genetic regulatory dynamics in neural development. J Comput Biol 2001, 8:429-442. 10.1089/106652701752236223, 11571076.
-
(2001)
J Comput Biol
, vol.8
, pp. 429-442
-
-
Wahde, M.1
Hertz, J.2
-
10
-
-
0037197936
-
Reverse engineering gene networks using singular value decomposition and robust regression
-
10.1073/pnas.092576199, 122920, 11983907
-
Yeung MKS, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 2002, 99(9):6163-6168. 10.1073/pnas.092576199, 122920, 11983907.
-
(2002)
Proc Natl Acad Sci
, vol.99
, Issue.9
, pp. 6163-6168
-
-
Yeung, M.K.S.1
Tegner, J.2
Collins, J.J.3
-
11
-
-
0038048325
-
Inferring genetic networks and identifying compound mode of action via expression profiling
-
10.1126/science.1081900, 12843395
-
Gardner TS, di Bernardo DX, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105. 10.1126/science.1081900, 12843395.
-
(2003)
Science
, vol.301
, pp. 102-105
-
-
Gardner, T.S.1
di Bernardo, D.X.2
Collins, J.J.3
-
13
-
-
71449120701
-
Discrete logical modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction
-
Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK. Discrete logical modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Sys Biol 2009, 5:331.
-
(2009)
Mol Sys Biol
, vol.5
, pp. 331
-
-
Saez-Rodriguez, J.1
Alexopoulos, L.G.2
Epperlein, J.3
Samaga, R.4
Lauffenburger, D.A.5
Klamt, S.6
Sorger, P.K.7
-
14
-
-
78149421254
-
DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
-
10.1371/journal.pone.0013397, 2963605, 21049040
-
Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 2010, 5(10):e13397. 10.1371/journal.pone.0013397, 2963605, 21049040.
-
(2010)
PLoS ONE
, vol.5
, Issue.10
-
-
Greenfield, A.1
Madar, A.2
Ostrer, H.3
Bonneau, R.4
-
15
-
-
84864946487
-
(2012). Integrating external biological knowledge in the construction of regulatory networks from time-series expression data
-
10.1186/1752-0509-6-101, 3465231, 22898396
-
Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, Yeung KY. (2012). Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Syst Biol 2012, 6:101. 10.1186/1752-0509-6-101, 3465231, 22898396.
-
(2012)
BMC Syst Biol
, vol.6
, pp. 101
-
-
Lo, K.1
Raftery, A.E.2
Dombek, K.M.3
Zhu, J.4
Schadt, E.E.5
Bumgarner, R.E.6
Yeung, K.Y.7
-
16
-
-
84875814497
-
Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge
-
Wang SQ, Li HX. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC Syst Biol 2012, 6(Suppl 1):S3.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.Suppl 1
-
-
Wang, S.Q.1
Li, H.X.2
-
17
-
-
34447342269
-
The impact of function perturbations in Boolean networks
-
10.1093/bioinformatics/btm093, 17379691
-
Xiao Y, Dougherty E. The impact of function perturbations in Boolean networks. Bioinformatics 2007, 23(10):1265-1273. 10.1093/bioinformatics/btm093, 17379691.
-
(2007)
Bioinformatics
, vol.23
, Issue.10
, pp. 1265-1273
-
-
Xiao, Y.1
Dougherty, E.2
-
18
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
10.1093/bioinformatics/bth448, 15284094
-
Yu J, Smith J, Hartemink A, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20(18):3594-3603. 10.1093/bioinformatics/bth448, 15284094.
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3594-3603
-
-
Yu, J.1
Smith, J.2
Hartemink, A.3
Jarvis, E.D.4
-
19
-
-
34548572045
-
Reverse engineering of polynomial dynamical systems
-
Jarrah A, Laubenbacher R, Stigler B, Stillman M. Reverse engineering of polynomial dynamical systems. Adv Appl Math 2007, 39(4):477-489.
-
(2007)
Adv Appl Math
, vol.39
, Issue.4
, pp. 477-489
-
-
Jarrah, A.1
Laubenbacher, R.2
Stigler, B.3
Stillman, M.4
-
20
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
10.1089/106652700750050961, 11108481
-
Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620. 10.1089/106652700750050961, 11108481.
-
(2000)
J Comput Biol
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
21
-
-
0036184629
-
Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks
-
10.1093/bioinformatics/18.2.261, 11847074
-
Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274. 10.1093/bioinformatics/18.2.261, 11847074.
-
(2002)
Bioinformatics
, vol.18
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.R.2
Kim, S.3
Zhang, W.4
-
22
-
-
34547788797
-
Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
-
Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.Suppl 5
-
-
Ferrazzi, F.1
Sebastiani, P.2
Ramoni, M.3
Bellazzi, R.4
-
23
-
-
43849084374
-
Inferring connectivity of genetic regulatory networks using information-theoretic criteria
-
Zhao W, Serpedin E, Dougherty ER. Inferring connectivity of genetic regulatory networks using information-theoretic criteria. Comput Biol and Bioinformatics, IEEE/ACM Trans 2008, 5(2):262-274.
-
(2008)
Comput Biol and Bioinformatics, IEEE/ACM Trans
, vol.5
, Issue.2
, pp. 262-274
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.R.3
-
24
-
-
42249112818
-
Petri net modelling of biological regulatory networks
-
Chaouiya C, Remy E, Thieffry D. Petri net modelling of biological regulatory networks. Jo Discrete Algo 2008, 6(2):165-177.
-
(2008)
Jo Discrete Algo
, vol.6
, Issue.2
, pp. 165-177
-
-
Chaouiya, C.1
Remy, E.2
Thieffry, D.3
-
25
-
-
79955713102
-
Parameter estimation for boolean models of biological networks
-
Dimitrova E, Garcia-Puente LD, Hinkelmann F, Jarrah AS, Laubenbacher R, Stigler B, Stillman M, Vera-Licona P. Parameter estimation for boolean models of biological networks. J Theor Comput Science 2011, 412:26.
-
(2011)
J Theor Comput Science
, vol.412
, pp. 26
-
-
Dimitrova, E.1
Garcia-Puente, L.D.2
Hinkelmann, F.3
Jarrah, A.S.4
Laubenbacher, R.5
Stigler, B.6
Stillman, M.7
Vera-Licona, P.8
-
27
-
-
35449002487
-
Inferring gene regulatory networks by integrating static and dynamic data
-
Ferrazzi F, Magni P, Sacchi L, Nuzzo A, Petrovic U, Bellazzi R. Inferring gene regulatory networks by integrating static and dynamic data. Int J Med Info 2007, 76(Supplement 3):S462-S475.
-
(2007)
Int J Med Info
, vol.76
, Issue.SUPPL. 3
-
-
Ferrazzi, F.1
Magni, P.2
Sacchi, L.3
Nuzzo, A.4
Petrovic, U.5
Bellazzi, R.6
-
28
-
-
34848893948
-
Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
-
10.1016/j.neunet.2007.07.002, 17714912
-
Xu R, Venayagamoorthy GK, Donald C, Wunsch I. Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 2007, 20(8):917-927. 10.1016/j.neunet.2007.07.002, 17714912.
-
(2007)
Neural Netw
, vol.20
, Issue.8
, pp. 917-927
-
-
Xu, R.1
Venayagamoorthy, G.K.2
Donald, C.3
Wunsch, I.4
-
29
-
-
38649104174
-
A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
-
Lee WP, Yang KC. A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputation 2008, 71:600-610.
-
(2008)
Neurocomputation
, vol.71
, pp. 600-610
-
-
Lee, W.P.1
Yang, K.C.2
-
30
-
-
60149094488
-
A divide-and-conquer approach to analyze underdetermined biochemical models
-
10.1093/bioinformatics/btp004, 19126574
-
Kotte O, Heinemann M. A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 2009, 25(4):519-525. 10.1093/bioinformatics/btp004, 19126574.
-
(2009)
Bioinformatics
, vol.25
, Issue.4
, pp. 519-525
-
-
Kotte, O.1
Heinemann, M.2
-
31
-
-
67649230197
-
Optimizing static thermodynamic models of transcriptional regulation
-
10.1093/bioinformatics/btp283, 2732318, 19398449
-
Bauer DC, Bailey TL. Optimizing static thermodynamic models of transcriptional regulation. Bioinformatics 2009, 25(13):1640-1646. 10.1093/bioinformatics/btp283, 2732318, 19398449.
-
(2009)
Bioinformatics
, vol.25
, Issue.13
, pp. 1640-1646
-
-
Bauer, D.C.1
Bailey, T.L.2
-
32
-
-
84869882656
-
TIGRESS: trustful inference of gene regulation using stability selection
-
10.1186/1752-0509-6-145, 3598250, 23173819
-
Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst Biol 2012, 6(1):145. 10.1186/1752-0509-6-145, 3598250, 23173819.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 145
-
-
Haury, A.C.1
Mordelet, F.2
Vera-Licona, P.3
Vert, J.P.4
-
33
-
-
36249019789
-
Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
-
Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann New York Acad Sci 2007, 1115:1-22.
-
(2007)
Ann New York Acad Sci
, vol.1115
, pp. 1-22
-
-
Stolovitzky, G.1
Monroe, D.2
Califano, A.3
-
34
-
-
63849210631
-
Lessons from the DREAM2 challenges: a community effort to assess biological network inference
-
Stolovitzky G, Prill RJ, Califano A. Lessons from the DREAM2 challenges: a community effort to assess biological network inference. Ann New York Acad Sci 2009, 1158(37):159-195.
-
(2009)
Ann New York Acad Sci
, vol.1158
, Issue.37
, pp. 159-195
-
-
Stolovitzky, G.1
Prill, R.J.2
Califano, A.3
-
35
-
-
84870305264
-
The DREAM5 Consortium. Wisdom of crowds for robust gene network inference
-
10.1038/nmeth.2016, 3512113, 22796662
-
Marbach D, Costello J, Kuffner R, Vega N, Pril L, Camacho D, Allison K, Kellis M, Collins J, Stolovitzky G. The DREAM5 Consortium. Wisdom of crowds for robust gene network inference. Nat Methods 2012, 9(8):796-804. 10.1038/nmeth.2016, 3512113, 22796662.
-
(2012)
Nat Methods
, vol.9
, Issue.8
, pp. 796-804
-
-
Marbach, D.1
Costello, J.2
Kuffner, R.3
Vega, N.4
Pril, L.5
Camacho, D.6
Allison, K.7
Kellis, M.8
Collins, J.9
Stolovitzky, G.10
-
36
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
-
10.1016/j.cell.2009.01.055, 19327819
-
Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 2009, 137(1):172-181. 10.1016/j.cell.2009.01.055, 19327819.
-
(2009)
Cell
, vol.137
, Issue.1
, pp. 172-181
-
-
Cantone, I.1
Marucci, L.2
Iorio, F.3
Ricci, M.A.4
Belcastro, V.5
Bansal, M.6
Santini, S.7
di Bernardo, M.8
di Bernardo, D.9
Cosma, M.P.10
-
38
-
-
79952181848
-
Polynomial dynamical systems in systems biology
-
American Mathematical Society, Providence, RI,, Laubenbacher R
-
Stigler B. Polynomial dynamical systems in systems biology. AMS 2006 Proceedings of Symposia in Applied Mathematics 2006, 59-84. American Mathematical Society, Providence, RI,, Laubenbacher R.
-
(2006)
AMS 2006 Proceedings of Symposia in Applied Mathematics
, pp. 59-84
-
-
Stigler, B.1
-
39
-
-
85081808828
-
Synchronous versus asynchronous modeling of gene regulatory networks
-
Garg A, Di Cara A, Xenarios I, Mendoza L, DeMicheli G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 1:306-312.
-
(2008)
Bioinformatics
, vol.1
, pp. 306-312
-
-
Garg, A.1
Di Cara, A.2
Xenarios, I.3
Mendoza, L.4
DeMicheli, G.5
-
40
-
-
0037686112
-
The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
-
10.1016/S0022-5193(03)00035-3, 12782112
-
Albert R, Othmer H. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1-18. 10.1016/S0022-5193(03)00035-3, 12782112.
-
(2003)
J Theor Biol
, vol.223
, pp. 1-18
-
-
Albert, R.1
Othmer, H.2
-
41
-
-
58049164511
-
Boolean network simulations for life scientists
-
10.1186/1751-0473-3-16, 2603008, 19014577
-
Albert I, Thakar J, Li S, Zhang R, Albert R. Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. 10.1186/1751-0473-3-16, 2603008, 19014577.
-
(2008)
Source Code Biol Med
, vol.3
, pp. 16
-
-
Albert, I.1
Thakar, J.2
Li, S.3
Zhang, R.4
Albert, R.5
-
42
-
-
67749106610
-
Synchronous and stochastic patterns of gene activation in the drosophila embryo
-
10.1126/science.1173976, 19628867
-
Boettiger AN, Levine M. Synchronous and stochastic patterns of gene activation in the drosophila embryo. Science 2009, 325:471-473. 10.1126/science.1173976, 19628867.
-
(2009)
Science
, vol.325
, pp. 471-473
-
-
Boettiger, A.N.1
Levine, M.2
-
43
-
-
63049103158
-
Synchronous gene expression of the Yersinia enterocolitica Ysa Type III secretion system and its effectors
-
10.1128/JB.01402-08, 2648357, 19124573
-
Walker KA, Miller VL. Synchronous gene expression of the Yersinia enterocolitica Ysa Type III secretion system and its effectors. J Bacteriol 2009, 191(6):1816-1826. 10.1128/JB.01402-08, 2648357, 19124573.
-
(2009)
J Bacteriol
, vol.191
, Issue.6
, pp. 1816-1826
-
-
Walker, K.A.1
Miller, V.L.2
-
44
-
-
58149358972
-
Dynamical modeling of the cholesterol regulatory pathway with Boolean networks
-
Kervizic G, Corcos L. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks. IBMC Syst Biol 2008, 2:99.
-
(2008)
IBMC Syst Biol
, vol.2
, pp. 99
-
-
Kervizic, G.1
Corcos, L.2
-
45
-
-
18844380444
-
Robustness and fragility of Boolean models for genetic regulatory networks
-
10.1016/j.jtbi.2005.01.023, 15882705
-
Chaves M, Albert R, Sontag ED. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235(3):431-449. 10.1016/j.jtbi.2005.01.023, 15882705.
-
(2005)
J Theor Biol
, vol.235
, Issue.3
, pp. 431-449
-
-
Chaves, M.1
Albert, R.2
Sontag, E.D.3
-
46
-
-
34547480306
-
An Efficient method for dynamic analysis of gene regulatory networks
-
Springer-Verlag Berlin, Heidelberg, Speed T, Huang H
-
Garg A, Xenarios I, Mendoza L, DeMicheli G. An Efficient method for dynamic analysis of gene regulatory networks. RECOMB 2007 2007, 62-76. Springer-Verlag Berlin, Heidelberg, Speed T, Huang H.
-
(2007)
RECOMB 2007
, pp. 62-76
-
-
Garg, A.1
Xenarios, I.2
Mendoza, L.3
DeMicheli, G.4
-
47
-
-
0038286479
-
The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases
-
Babson E
-
Onn S, Thomas R., Babson E The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Adv Appl Math 2003, 30:529-544. Babson E.
-
(2003)
Adv Appl Math
, vol.30
, pp. 529-544
-
-
Onn, S.1
Thomas, R.2
-
49
-
-
84855538784
-
Introduction to Evolutionary Computation
-
Institute of Physics Publishing Bristol and Philadelphia: Philadelphia, PA, Back T, Fogel DB, Michalewicz Z
-
Fogel DB. Introduction to Evolutionary Computation. Evolutionary Computation 1: Basic Algorithms and Operators 2000, 1-3. Institute of Physics Publishing Bristol and Philadelphia: Philadelphia, PA, Back T, Fogel DB, Michalewicz Z.
-
(2000)
Evolutionary Computation 1: Basic Algorithms and Operators
, pp. 1-3
-
-
Fogel, D.B.1
-
50
-
-
85081802932
-
Gene regulatory network modelling with evolutionary algorithms -an integrative approach
-
Dublin City University, 2011
-
Sirbu A. Gene regulatory network modelling with evolutionary algorithms -an integrative approach. PhD thesis Dublin City University, 2011.
-
PhD thesis
-
-
Sirbu, A.1
-
51
-
-
33947107404
-
Evolutionary computation in bioinformatics: a review. Systems, Man, and Cybernetics, Part C: Applications and Reviews
-
Pal S, Bandyopadhyay S, Ray S. Evolutionary computation in bioinformatics: a review. Systems, Man, and Cybernetics, Part C: Applications and Reviews. IEEE Trans 2006, 36(5):601-615.
-
(2006)
IEEE Trans
, vol.36
, Issue.5
, pp. 601-615
-
-
Pal, S.1
Bandyopadhyay, S.2
Ray, S.3
-
52
-
-
33750264435
-
Comparing evolutionary algorithms on the problem of network inference
-
(GECCO 2006). ACM Press, New York, NY, 2006, 305-306
-
Spieth C, Worzischek R, Streichert F, Supper J, Speer N, Zell A. Comparing evolutionary algorithms on the problem of network inference. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006). ACM Press, New York, NY, 2006, 305-306.
-
Proceedings of the Genetic and Evolutionary Computation Conference
-
-
Spieth, C.1
Worzischek, R.2
Streichert, F.3
Supper, J.4
Speer, N.5
Zell, A.6
-
53
-
-
77649176945
-
Comparison of evolutionary algorithms in gene regulatory network model inference
-
10.1186/1471-2105-11-59, 2831005, 20105328
-
Sirbu A, Ruskin HJ, Crane M. Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 2010, 11:59. 10.1186/1471-2105-11-59, 2831005, 20105328.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 59
-
-
Sirbu, A.1
Ruskin, H.J.2
Crane, M.3
-
55
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Ann Stat 1978, 6(2):461-466.
-
(1978)
Ann Stat
, vol.6
, Issue.2
, pp. 461-466
-
-
Schwarz, G.1
-
56
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Budapest: Akademiai Kiado, Petrov BN, Csaki F
-
Akaike H. Information theory and an extension of the maximum likelihood principle. Proc 2nd Int Symp Information Theory 1973, 267-281. Budapest: Akademiai Kiado, Petrov BN, Csaki F.
-
(1973)
Proc 2nd Int Symp Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
57
-
-
0037212955
-
On latin hypercube sampling for structural reliability analysis
-
Olsson G, Sandberg A, Dahlblom O. On latin hypercube sampling for structural reliability analysis. Struct Safety 2003, 25(1):47-68.
-
(2003)
Struct Safety
, vol.25
, Issue.1
, pp. 47-68
-
-
Olsson, G.1
Sandberg, A.2
Dahlblom, O.3
-
58
-
-
20144387371
-
Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
-
10.1093/bioinformatics/bti071, 15514004
-
Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 2005, 21:1154-1163. 10.1093/bioinformatics/bti071, 15514004.
-
(2005)
Bioinformatics
, vol.21
, pp. 1154-1163
-
-
Kimura, S.1
Ide, K.2
Kashihara, A.3
Kano, M.4
Hatakeyama, M.5
Masui, R.6
Nakagawa, N.7
Yokoyama, S.8
Kuramitsu, S.9
Konagaya, A.10
-
59
-
-
16344385431
-
Evolutionary optimization with data collocation for reverse engineering of biological networks
-
10.1093/bioinformatics/bti099, 15513993
-
Tsai KY, Wang FS. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 2005, 21(7):1180-1188. 10.1093/bioinformatics/bti099, 15513993.
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1180-1188
-
-
Tsai, K.Y.1
Wang, F.S.2
-
60
-
-
30344481405
-
Reverse engineering gene regulatory networks using evolutionary algorithms and grid computing
-
Swain M, Hunniford E. Reverse engineering gene regulatory networks using evolutionary algorithms and grid computing. Clinical Monitoring Comput 2005, 19:329-337.
-
(2005)
Clinical Monitoring Comput
, vol.19
, pp. 329-337
-
-
Swain, M.1
Hunniford, E.2
-
61
-
-
67650126034
-
Bayesian gene regulatory network inference optimization by means of genetic algorithms
-
Bevilacqua V, Mastronardi G. Bayesian gene regulatory network inference optimization by means of genetic algorithms. J Universal Comput Sci 2009, 15(4):826-839.
-
(2009)
J Universal Comput Sci
, vol.15
, Issue.4
, pp. 826-839
-
-
Bevilacqua, V.1
Mastronardi, G.2
-
62
-
-
84055213451
-
Reverse engineering of molecular networks from a common combinatorial approach
-
New York: Wiley, Eiloumi M, Zomaya AY
-
Dasgupta B, Vera-Licona P, Sontag E. Reverse engineering of molecular networks from a common combinatorial approach. Algorithms in Computational Molecular Biology 2011, New York: Wiley, Eiloumi M, Zomaya AY.
-
(2011)
Algorithms in Computational Molecular Biology
-
-
Dasgupta, B.1
Vera-Licona, P.2
Sontag, E.3
-
63
-
-
77954916938
-
Discretization of time series data
-
10.1089/cmb.2008.0023, 3203514, 20583929
-
Dimitrova E, Vera-Licona P, McGee J, Laubenbacher R. Discretization of time series data. J Comput Biol 2010, 17(6):853-868. 10.1089/cmb.2008.0023, 3203514, 20583929.
-
(2010)
J Comput Biol
, vol.17
, Issue.6
, pp. 853-868
-
-
Dimitrova, E.1
Vera-Licona, P.2
McGee, J.3
Laubenbacher, R.4
-
64
-
-
77952663448
-
TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
-
10.1186/1471-2105-11-154, 2862045, 20338053
-
Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154. 10.1186/1471-2105-11-154, 2862045, 20338053.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 154
-
-
Zoppoli, P.1
Morganella, S.2
Ceccarelli, M.3
-
65
-
-
77954368891
-
Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach
-
10.1186/1471-2105-11-337, 2897832, 20565962
-
Zou C, Ladroue C, Guo S, Feng J. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach. BMC Bioinformatics 2010, 11:337. 10.1186/1471-2105-11-337, 2897832, 20565962.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 337
-
-
Zou, C.1
Ladroue, C.2
Guo, S.3
Feng, J.4
-
66
-
-
78649781257
-
Functional data analysis for identifying nonlinear models of gene regulatory networks
-
Summer G, Perkins T. Functional data analysis for identifying nonlinear models of gene regulatory networks. BMC Genomics 2011, 11(Suppl 4):S18.
-
(2011)
BMC Genomics
, vol.11
, Issue.Suppl 4
-
-
Summer, G.1
Perkins, T.2
-
67
-
-
34548388925
-
Inference of gene networks from temporal gene expression profiles
-
10.1049/iet-syb:20060079, 17907680
-
Bansal M, di Bernardo D. Inference of gene networks from temporal gene expression profiles. IET, Syst Biol 2007, 1:306-312. 10.1049/iet-syb:20060079, 17907680.
-
(2007)
IET, Syst Biol
, vol.1
, pp. 306-312
-
-
Bansal, M.1
di Bernardo, D.2
-
68
-
-
33646197928
-
Rosetta error model for gene expression analysis
-
10.1093/bioinformatics/btl045, 16522673
-
Weng L, Dai H, Zhan Y, He Y, Stepaniants S, Bassett D. Rosetta error model for gene expression analysis. Bioinformatics 2006, 22(9):1111-1121. 10.1093/bioinformatics/btl045, 16522673.
-
(2006)
Bioinformatics
, vol.22
, Issue.9
, pp. 1111-1121
-
-
Weng, L.1
Dai, H.2
Zhan, Y.3
He, Y.4
Stepaniants, S.5
Bassett, D.6
-
69
-
-
34248177279
-
How high is the level of technical noise in microarray data
-
10.1186/1745-6150-2-9, 1855048, 17428341
-
Klebanov L, Yakovlev A. How high is the level of technical noise in microarray data. Biology Direct 2007, 2:9-15. 10.1186/1745-6150-2-9, 1855048, 17428341.
-
(2007)
Biology Direct
, vol.2
, pp. 9-15
-
-
Klebanov, L.1
Yakovlev, A.2
-
70
-
-
38349088960
-
Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data
-
10.1186/1471-2105-8-412, 2204045, 17961233
-
Chen J, Hsueh H, Delongchamp R, Lin C, Tsai C. Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 2007, 8:412-418. 10.1186/1471-2105-8-412, 2204045, 17961233.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 412-418
-
-
Chen, J.1
Hsueh, H.2
Delongchamp, R.3
Lin, C.4
Tsai, C.5
|