메뉴 건너뛰기




Volumn 36, Issue 5, 2006, Pages 601-615

Evolutionary computation in bioinformatics: A review

Author keywords

Biocomputing; data mining; evolutionary algorithm; molecular biology; soft computing

Indexed keywords

BIOCOMPUTING; DEOXYRIBONUCLEIC ACIDS; EVOLUTIONARY COMPUTATIONS; FRAGMENT ASSEMBLIES; GENE FINDINGS; GENE MAPPINGS; GENE REGULATORY NETWORKS; GENE SEQUENCE ANALYSIS; LIGAND DESIGNS; MICROARRAY ANALYSIS; MOLECULAR DOCKING; PHYLOGENETIC TREES; RESEARCH ACTIVITIES; RIBONUCLEIC ACIDS; STRUCTURE PREDICTIONS; GENE REGULATORY NETWORK ANALYSIS;

EID: 33947107404     PISSN: 10946977     EISSN: 15582442     Source Type: Journal    
DOI: 10.1109/TSMCC.2005.855515     Document Type: Article
Times cited : (89)

References (121)
  • 1
    • 0003396310 scopus 로고    scopus 로고
    • Bioinformatics: The Machine Learning Approach
    • Cambridge, MA: MIT Press
    • P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach. Cambridge, MA: MIT Press, 1998.
    • (1998)
    • Baldi, P.1    Brunak, S.2
  • 2
    • 0035521560 scopus 로고    scopus 로고
    • Challenges for intelligent systems in biology
    • Nov./Dec.
    • R. B. Altman, A. Valencia, S. Miyano, and S. Ranganathan, “Challenges for intelligent systems in biology,” IEEE Intell. Syst., vol. 16, no. 6, pp. 14–20, Nov./Dec. 2001.
    • (2001) IEEE Intell. Syst. , vol.16 , Issue.6 , pp. 14-20
    • Altman, R.B.1    Valencia, A.2    Miyano, S.3    Ranganathan, S.4
  • 3
    • 0003722376 scopus 로고
    • Genetic Algorithms in Optimization, Search, and Machine Learning
    • Reading, MA: Addison-Wesley
    • D. Goldberg, Genetic Algorithms in Optimization, Search, and Machine Learning. Reading, MA: Addison-Wesley, 1989.
    • (1989)
    • Goldberg, D.1
  • 4
    • 0000782389 scopus 로고    scopus 로고
    • Genetic algorithm with elitist model and its convergence
    • D. Bhandari, C. A. Murthy, and S. K. Pal, “Genetic algorithm with elitist model and its convergence,” Int. J. Pattern Rcognit. Artif. Intell., vol. 10, no. 6, pp. 731–747, 1996.
    • (1996) Int. J. Pattern Rcognit. Artif. Intell. , vol.10 , Issue.6 , pp. 731-747
    • Bhandari, D.1    Murthy, C.A.2    Pal, S.K.3
  • 5
    • 0024735689 scopus 로고
    • Classifier systems and genetic algorithms
    • L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and genetic algorithms,” Artif. Intell., vol. 40, no. 1–3, pp. 235–282, 1989.
    • (1989) Artif. Intell. , vol.40 , Issue.1-3 , pp. 235-282
    • Booker, L.B.1    Goldberg, D.E.2    Holland, J.H.3
  • 7
    • 84951507118 scopus 로고
    • Genetic algorithms and machine learning
    • D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn., vol. 3, pp. 95–100, 1988.
    • (1988) Mach. Learn. , vol.3 , pp. 95-100
    • Goldberg, D.E.1    Holland, J.H.2
  • 8
    • 58049180144 scopus 로고
    • Adaptation in Natural and Artificial Systems
    • Cambridge, MA: MIT Press
    • J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press, 1992.
    • (1992)
    • Holland, J.H.1
  • 9
    • 0003915738 scopus 로고
    • Handbook of Genetic Algorithm
    • New York: Van Nostrand Reinhold
    • L. Davis, Handbook of Genetic Algorithm. New York: Van Nostrand Reinhold, 1991.
    • (1991)
    • Davis, L.1
  • 10
    • 0004096390 scopus 로고    scopus 로고
    • Introduction to Computational Molecular Biology
    • Boston, MA: Thomson
    • J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology. Boston, MA: Thomson, 1999.
    • (1999)
    • Setubal, J.1    Meidanis, J.2
  • 12
  • 13
    • 0029387798 scopus 로고
    • Genetic algorithms, operators, and DNA fragment assembly
    • R. J. Parsons, S. Forrest, and C. Burks, “Genetic algorithms, operators, and DNA fragment assembly,” Mach. Learn., vol. 21, no. 1–2, pp. 11–33, 1995.
    • (1995) Mach. Learn. , vol.21 , Issue.1-2 , pp. 11-33
    • Parsons, R.J.1    Forrest, S.2    Burks, C.3
  • 15
  • 16
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” J. Mol. Biol., vol. 48, pp. 443-453, 1970.
    • (1970) J. Mol. Biol. , vol.48 , pp. 443-453
    • Needleman, S.B.1    Wunsch, C.D.2
  • 17
    • 0019887799 scopus 로고
    • Identification of common molecular sequences
    • T. F. Smith and M. S. Waterman, “Identification of common molecular sequences,” J. Mol. Biol., vol. 147, pp. 195–197, 1981.
    • (1981) J. Mol. Biol. , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 18
    • 0003533473 scopus 로고
    • Simulated Annealing: A Review of Theory and Applications
    • Norwell, MA: Kluwer
    • E. Aart and V. P. Laarhoven, Simulated Annealing: A Review of Theory and Applications. Norwell, MA: Kluwer, 1987.
    • (1987)
    • Aart, E.1    Laarhoven, V.P.2
  • 19
    • 0027912333 scopus 로고
    • Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment
    • C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton, “Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment,” Science, vol. 262, pp. 208–214, 1993.
    • (1993) Science , vol.262 , pp. 208-214
    • Lawrence, C.1    Altschul, S.2    Boguski, M.3    Liu, J.4    Neuwald, A.5    Wootton, J.6
  • 20
    • 0029872694 scopus 로고    scopus 로고
    • SAGA: Sequence alignment by genetic algorithm
    • C. Notredame and D. G. Higgins, “SAGA: Sequence alignment by genetic algorithm,” Nucleic Acids Res., vol. 24, no. 8, pp. 1515–1524, 1996.
    • (1996) Nucleic Acids Res. , vol.24 , Issue.8 , pp. 1515-1524
    • Notredame, C.1    Higgins, D.G.2
  • 21
    • 0031461056 scopus 로고    scopus 로고
    • A genetic algorithm for multiple molecular sequence alignment
    • C. Zhang and A. K. C. Wong, “A genetic algorithm for multiple molecular sequence alignment,” Bioinformatics, vol. 13, pp. 565–581, 1997.
    • (1997) Bioinformatics , vol.13 , pp. 565-581
    • Zhang, C.1    Wong, A.K.C.2
  • 22
    • 0002478891 scopus 로고
    • Adapting operator probabilities in genetic algorithms
    • J. D. Schaffer, Ed.
    • L. Davis, “Adapting operator probabilities in genetic algorithms,” in Proc. 3rd Int. Conf. Genetic Algorithms, J. D. Schaffer, Ed., 1989, pp. 61–69.
    • (1989) Proc. 3rd Int. Conf. Genetic Algorithms , pp. 61-69
    • Davis, L.1
  • 23
    • 33947132935 scopus 로고    scopus 로고
    • A web server for multiple sequence alignment using genetic algorithm
    • T. Yokoyama, T. Watanabe, A. Taneda, and T. Shimizu, “A web server for multiple sequence alignment using genetic algorithm,” Genome Inf., vol. 12, pp. 382-383,2001.
    • (2001) Genome Inf. , vol.12 , pp. 382-383
    • Yokoyama, T.1    Watanabe, T.2    Taneda, A.3    Shimizu, T.4
  • 24
    • 2942619012 scopus 로고    scopus 로고
    • 3DCoffee: Combining protein sequences and structures within multiple sequence alignments
    • O. O'sullivan, K. Suhre, C. Abergel, D. G. Higgins, and C. Notredame, “3DCoffee: Combining protein sequences and structures within multiple sequence alignments,” J. Mol. Biol., vol. 340, no. 2, pp. 385–395, 2004.
    • (2004) J. Mol. Biol. , vol.340 , Issue.2 , pp. 385-395
    • O'sullivan, O.1    Suhre, K.2    Abergel, C.3    Higgins, D.G.4    Notredame, C.5
  • 25
    • 0030813152 scopus 로고    scopus 로고
    • RAGA: RNA sequence alignment by genetic algorithm
    • C. Notredame, E. A. O’Brien, and D. G. Higgins, “RAGA: RNA sequence alignment by genetic algorithm,” Nucleic Acids Res., vol. 25, no. 22, pp.4570-4580, 1997.
    • (1997) Nucleic Acids Res. , vol.25 , Issue.22 , pp. 4570-4580
    • Notredame, C.1    O’Brien, E.A.2    Higgins, D.G.3
  • 26
    • 0027968068 scopus 로고
    • CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673-4680, 1994.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 27
    • 0032312925 scopus 로고    scopus 로고
    • A technique of genetic algorithm and sequence synthesis for multiple molecular sequence alignment
    • C. Zhang and A. K. C. Wong, “A technique of genetic algorithm and sequence synthesis for multiple molecular sequence alignment,” in Proc. IEEE Int. Conf. Syst. Man, and Cybernetics, vol. 3, 1998, pp. 2442–2447.
    • (1998) Proc. IEEE Int. Conf. Syst. Man, and Cybernetics , vol.3 , pp. 2442-2447
    • Zhang, C.1    Wong, A.K.C.2
  • 28
    • 0031357475 scopus 로고    scopus 로고
    • Toward efficient multiple molecular sequence alignment: A system of genetic algorithm and dynamic programming
    • Dec.
    • C. Zhang and A. K. C. Wong, “Toward efficient multiple molecular sequence alignment: A system of genetic algorithm and dynamic programming,” IEEE Trans. Syst. Man, Cybern. B, vol. 27, no. 6, pp. 918–932, Dec. 1997.
    • (1997) IEEE Trans. Syst. Man, Cybern. B , vol.27 , Issue.6 , pp. 918-932
    • Zhang, C.1    Wong, A.K.C.2
  • 29
    • 0029702786 scopus 로고    scopus 로고
    • Positive and negative combination effects of crossover and mutation operators in sequencing problems
    • T. Murata and H. Ishibuchi, “Positive and negative combination effects of crossover and mutation operators in sequencing problems,” Evol. Comput., vol. 20–22, pp. 170–175, 1996.
    • (1996) Evol. Comput. , vol.20-22 , pp. 170-175
    • Murata, T.1    Ishibuchi, H.2
  • 30
    • 0028751766 scopus 로고
    • A genetic algorithm for molecular sequence comparison
    • C. Zhang, “A genetic algorithm for molecular sequence comparison,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 2, 1994, pp. 1926–1931.
    • (1994) Proc. IEEE Int. Conf. Systems, Man, and Cybernetics , vol.2 , pp. 1926-1931
    • Zhang, C.1
  • 31
    • 0033997724 scopus 로고    scopus 로고
    • Protein structure alignment using a genetic algorithm
    • J. D. Szustakowski and Z. Weng, “Protein structure alignment using a genetic algorithm,” Proteins, vol. 38, no. 4, pp. 428–440, 2000.
    • (2000) Proteins , vol.38 , Issue.4 , pp. 428-440
    • Szustakowski, J.D.1    Weng, Z.2
  • 32
    • 1842717540 scopus 로고    scopus 로고
    • Multiple sequence alignment by genetic algorithm
    • K. Hanada, T. Yokoyama, and T. Shimizu, “Multiple sequence alignment by genetic algorithm,” Genome Inf., vol. 11, pp. 317–318, 2000.
    • (2000) Genome Inf. , vol.11 , pp. 317-318
    • Hanada, K.1    Yokoyama, T.2    Shimizu, T.3
  • 33
    • 0041028968 scopus 로고    scopus 로고
    • Multiple molecular sequence alignment by island parallel genetic algorithm
    • L. A. Anbarasu, P. Narayanasamy, and V. Sundararajan, “Multiple molecular sequence alignment by island parallel genetic algorithm,” Current Sci., vol. 78, no. 7, pp. 858–863, 2000.
    • (2000) Current Sci. , vol.78 , Issue.7 , pp. 858-863
    • Anbarasu, L.A.1    Narayanasamy, P.2    Sundararajan, V.3
  • 37
    • 84901465189 scopus 로고    scopus 로고
    • A coevolutionary approach to adapt the genotype-phenotype map in genetic algorithms
    • H. Murao, H. Tamaki, and S. Kitamura, “A coevolutionary approach to adapt the genotype-phenotype map in genetic algorithms,” in Proc. Congress Evolutionary Computation, vol. 2, 2002, pp. 1612–1617.
    • (2002) Proc. Congress Evolutionary Computation , vol.2 , pp. 1612-1617
    • Murao, H.1    Tamaki, H.2    Kitamura, S.3
  • 39
    • 0030218799 scopus 로고    scopus 로고
    • Finding genes by computer: The state of the art
    • J. W. Fickett, “Finding genes by computer: The state of the art,” Trends Genetics, vol. 12, no. 8, pp. 316–320, 1996.
    • (1996) Trends Genetics , vol.12 , Issue.8 , pp. 316-320
    • Fickett, J.W.1
  • 40
    • 0031856714 scopus 로고    scopus 로고
    • A genetic algorithm for designing gene family-specific oligonucleotide sets used for hybridization: The G protein-coupled receptor protein superfamily
    • A. Kel, A. Ptitsyn, V. Babenko, S. Meier-Ewert, and H. Lehrach, “A genetic algorithm for designing gene family-specific oligonucleotide sets used for hybridization: The G protein-coupled receptor protein superfamily,” Bioinformatics, vol. 14, no. 3, pp. 259–270, 1998.
    • (1998) Bioinformatics , vol.14 , Issue.3 , pp. 259-270
    • Kel, A.1    Ptitsyn, A.2    Babenko, V.3    Meier-Ewert, S.4    Lehrach, H.5
  • 41
    • 0042889134 scopus 로고    scopus 로고
    • Recognition of eukaryotic promoters using a genetic algorithm based on iterative discriminant analysis
    • V. G. Levitsky and A. V. Katokhin, “Recognition of eukaryotic promoters using a genetic algorithm based on iterative discriminant analysis,” In Silico Biol., vol. 3, no. 1–2, pp. 81–87, 2003.
    • (2003) In Silico Biol. , vol.3 , Issue.1-2 , pp. 81-87
    • Levitsky, V.G.1    Katokhin, A.V.2
  • 42
    • 0033025047 scopus 로고    scopus 로고
    • Promoter2.0: For the recognition of PolII promoter sequences
    • S. Knudsen, “Promoter2.0: For the recognition of PolII promoter sequences,” Bioinformatics, vol. 15, pp. 356–361, 1999.
    • (1999) Bioinformatics , vol.15 , pp. 356-361
    • Knudsen, S.1
  • 43
    • 0013330878 scopus 로고    scopus 로고
    • What is bioinformatics? A proposed definition and overview of the field
    • AB, Canada: IMIA
    • N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformatics? A proposed definition and overview of the field,” in Yearbook Medical Informatics: Edmonton, AB, Canada: IMIA, 2001, pp. 83–100.
    • (2001) Yearbook Medical Informatics: Edmonton , pp. 83-100
    • Luscombe, N.M.1    Greenbaum, D.2    Gerstein, M.3
  • 44
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • J. Quackenbush, “Computational analysis of microarray data,” Nat. Rev. Genetics, vol. 2, pp. 418-427, 2001.
    • (2001) Nat. Rev. Genetics , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 45
    • 0345407797 scopus 로고    scopus 로고
    • Applying genetic algorithms to finding the optimal order in displaying the microarray data
    • H. K. Tsai, J. M. Yang, and C. Y. Kao, “Applying genetic algorithms to finding the optimal order in displaying the microarray data,” in Proc. GECCO, 2002, pp. 610–617.
    • (2002) Proc. GECCO , pp. 610-617
    • Tsai, H.K.1    Yang, J.M.2    Kao, C.Y.3
  • 46
    • 3042631031 scopus 로고    scopus 로고
    • An evolutionary approach for gene expression patterns
    • Jun.
    • H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, “An evolutionary approach for gene expression patterns,” IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 2, pp. 69–78, Jun. 2004.
    • (2004) IEEE Trans. Inf. Technol. Biomed. , vol.8 , Issue.2 , pp. 69-78
    • Tsai, H.K.1    Yang, J.M.2    Tsai, Y.F.3    Kao, C.Y.4
  • 47
    • 0037935423 scopus 로고    scopus 로고
    • The proportional genetic algorithm: Gene expression in a genetic algorithm
    • A. S. Wu and I. Garibay, “The proportional genetic algorithm: Gene expression in a genetic algorithm,” Genetic Programm. Evol. Hardware, vol. 3, no. 2, pp. 157–192, 2002.
    • (2002) Genetic Programm. Evol. Hardware , vol.3 , Issue.2 , pp. 157-192
    • Wu, A.S.1    Garibay, I.2
  • 48
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks from a small number of gene expression patterns under the boolean network model,” in Proc. Pacific Symp. Biocomputing, vol. 99, 1999, pp. 17–28.
    • (1999) Proc. Pacific Symp. Biocomputing , vol.99 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 49
    • 0034869717 scopus 로고    scopus 로고
    • Inference of gene regulatory model by genetic algorithms
    • S. Ando and H. Iba, “Inference of gene regulatory model by genetic algorithms,” in Proc. Congress Evolutionary Computation, vol. 1, 2001, pp. 712–719.
    • (2001) Proc. Congress Evolutionary Computation , vol.1 , pp. 712-719
    • Ando, S.1    Iba, H.2
  • 50
    • 0031582763 scopus 로고    scopus 로고
    • Trans gene regulation in adaptive evolution: A genetic algorithm model
    • N. Behera and V. Nanjundiah, “Trans gene regulation in adaptive evolution: A genetic algorithm model,”J. Theore. Biol., vol. 188, pp. 153–162, 1997.
    • (1997) J. Theore. Biol. , vol.188 , pp. 153-162
    • Behera, N.1    Nanjundiah, V.2
  • 51
    • 0003329394 scopus 로고    scopus 로고
    • Quantitative modeling of gene regulatory network-identifying the network by means of genetic algorithms
    • presented at the
    • S. Ando and H. Iba, “Quantitative modeling of gene regulatory network-identifying the network by means of genetic algorithms,” presented at the 11th Genome Informatics Workshop, 2000.
    • (2000) 11th Genome Informatics Workshop
    • Ando, S.1    Iba, H.2
  • 53
  • 54
    • 0031892789 scopus 로고    scopus 로고
    • A genetic algorithm for maximum likelihood phylogeny inference using nucleotide sequence data
    • P. O. Lewis, “A genetic algorithm for maximum likelihood phylogeny inference using nucleotide sequence data,” Mol. Biol. Evol., vol. 15, no. 3, pp. 277–283, 1998.
    • (1998) Mol. Biol. Evol. , vol.15 , Issue.3 , pp. 277-283
    • Lewis, P.O.1
  • 55
    • 0036679128 scopus 로고    scopus 로고
    • The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation
    • A. R. Lemmon and M. C. Milinkovitch, “The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation,” Proc. Nat. Acad. Sci., vol. 99, no. 16, pp. 10516–10521, 2002.
    • (2002) Proc. Nat. Acad. Sci. , vol.99 , Issue.16 , pp. 10516-10521
    • Lemmon, A.R.1    Milinkovitch, M.C.2
  • 56
    • 0034819230 scopus 로고    scopus 로고
    • Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny
    • K. Katoh, K. Kuma, and T. Miyata, “Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny,”J. Mol. Evol., vol. 53, no. 4–5, pp. 477–484, 2001.
    • (2001) J. Mol. Evol. , vol.53 , Issue.4-5 , pp. 477-484
    • Katoh, K.1    Kuma, K.2    Miyata, T.3
  • 57
    • 0030309199 scopus 로고    scopus 로고
    • Protein phylogenetic inference using maximum likelihood with a genetic algorithm
    • H. Matsuda, “Protein phylogenetic inference using maximum likelihood with a genetic algorithm,” Pacific Symp. Biocomputing, 1996, pp. 512—523.
    • (1996) Pacific Symp. Biocomputing , pp. 512-523
    • Matsuda, H.1
  • 59
    • 0033639086 scopus 로고    scopus 로고
    • Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths
    • P. Baldi and P. F. Baisnee, “Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths,” Bioinformatics, vol. 16, pp.865-889, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 865-889
    • Baldi, P.1    Baisnee, P.F.2
  • 60
    • 0033869101 scopus 로고    scopus 로고
    • A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability
    • C. Anselmi, G. Bocchinfuso, P. De Santis, M. Savino, and A. Scipioni, “A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability,” J. Biophys., vol. 79, no. 2, pp. 601–613, 2000.
    • (2000) J. Biophys. , vol.79 , Issue.2 , pp. 601-613
    • Anselmi, C.1    Bocchinfuso, G.2    De Santis, P.3    Savino, M.4    Scipioni, A.5
  • 61
    • 84989761699 scopus 로고
    • Theory of Elasticity
    • New York: Pergamon
    • L. D. Landau and E. M. Lifshitz, Theory of Elasticity. New York: Pergamon, 1970.
    • (1970)
    • Landau, L.D.1    Lifshitz, E.M.2
  • 62
    • 0030636935 scopus 로고    scopus 로고
    • Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: Comparison with distance geometry calculations
    • M. L. Beckers, L. M. Buydens, J. A. Pikkemaat, and C. Altona, “Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: Comparison with distance geometry calculations,” J. Biomol. NMR, vol. 9, no. 1, pp. 25–34, 1997.
    • (1997) J. Biomol. NMR , vol.9 , Issue.1 , pp. 25-34
    • Beckers, M.L.1    Buydens, L.M.2    Pikkemaat, J.A.3    Altona, C.4
  • 63
    • 0033976498 scopus 로고    scopus 로고
    • Optimum DNA curvature using a hybrid approach involving an artificial neural network and genetic algorithm
    • R. V. Parbhane, S. Unniraman, S. S. Tambe, V. Nagaraja, and B. D. Kulkarni, “Optimum DNA curvature using a hybrid approach involving an artificial neural network and genetic algorithm,” J. Biomol. Struct. Dyn., vol. 17, no. 4, pp. 665–672, 2000.
    • (2000) J. Biomol. Struct. Dyn. , vol.17 , Issue.4 , pp. 665-672
    • Parbhane, R.V.1    Unniraman, S.2    Tambe, S.S.3    Nagaraja, V.4    Kulkarni, B.D.5
  • 64
    • 0025315854 scopus 로고
    • Prediction of RNA secondary structure including pseudoknotting by computer simulation
    • J. P. Adrahams and M. Breg, “Prediction of RNA secondary structure including pseudoknotting by computer simulation,” Nucleic Acids Res., vol. 18, pp. 3035–3044, 1990.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 3035-3044
    • Adrahams, J.P.1    Breg, M.2
  • 65
    • 33947154096 scopus 로고
    • RNA structure prediction
    • San Diego, CA: Academic
    • M. Waterman, “RNA structure prediction,” in Methods in Enzymology. San Diego, CA: Academic, vol. 164, 1988.
    • (1988) Methods in Enzymology. , vol.164
    • Waterman, M.1
  • 66
    • 0019876473 scopus 로고
    • Optimal computer folding of large RNA sequences using thermo-dynamics and auxiliary information
    • M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using thermo-dynamics and auxiliary information,” Nucleic Acids Res.,vol. 9, pp. 133–148, 1981.
    • (1981) Nucleic Acids Res. , vol.9 , pp. 133-148
    • Zuker, M.1    Stiegler, P.2
  • 67
    • 0029025720 scopus 로고
    • An APL-programmed genetic algorithm for the prediction of RNA secondary structure
    • V. Batenburg, A. P. Gultyaev, and C. W. A. Pleij, “An APL-programmed genetic algorithm for the prediction of RNA secondary structure,” J. Theoret. Biol., vol. 174, no. 3, pp. 269–280, 1995.
    • (1995) J. Theoret. Biol. , vol.174 , Issue.3 , pp. 269-280
    • Batenburg, V.1    Gultyaev, A.P.2    Pleij, C.W.A.3
  • 68
    • 0029061125 scopus 로고
    • The computer simulation of RNA folding pathways using an genetic algorithm
    • A. P. Gultyaev, V. Batenburg, and C. W. A. Pleij, “The computer simulation of RNA folding pathways using an genetic algorithm,” J. Mol. Biol., vol. 250, pp. 37–51, 1995.
    • (1995) J. Mol. Biol. , vol.250 , pp. 37-51
    • Gultyaev, A.P.1    Batenburg, V.2    Pleij, C.W.A.3
  • 69
    • 0345293275 scopus 로고    scopus 로고
    • A permutation-based genetic algorithm for the RNA folding problem: A critical look at selection strategies, crossover operators, and representation issues
    • K. C. Wiese and E. Glen, “A permutation-based genetic algorithm for the RNA folding problem: A critical look at selection strategies, crossover operators, and representation issues,” Biosystems, vol. 72, no. 1–2, pp. 29-41,2003.
    • (2003) Biosystems , vol.72 , Issue.1-2 , pp. 29-41
    • Wiese, K.C.1    Glen, E.2
  • 70
    • 0028547954 scopus 로고
    • A massively parallel genetic algorithm for RNA secondary structure prediction
    • B. A. Shapiro and J. Navetta, “A massively parallel genetic algorithm for RNA secondary structure prediction,” J. Supercomput., vol. 8, pp. 195-207, 1994.
    • (1994) J. Supercomput. , vol.8 , pp. 195-207
    • Shapiro, B.A.1    Navetta, J.2
  • 71
    • 0029966818 scopus 로고    scopus 로고
    • An annealing mutation operator in the genetic algorithms for RNA folding
    • B. A. Shapiro and J. C. Wu, “An annealing mutation operator in the genetic algorithms for RNA folding,” Comput. Appl. Biosci., vol. 12, pp. 171–180, 1996.
    • (1996) Comput. Appl. Biosci. , vol.12 , pp. 171-180
    • Shapiro, B.A.1    Wu, J.C.2
  • 72
    • 0035105948 scopus 로고    scopus 로고
    • The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation
    • B. A. Shapiro, J. C. Wu, D. Bengali, and M. J. Potts, “The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation,” Bioinformatics, vol. 17, no. 2, pp. 137–148, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 137-148
    • Shapiro, B.A.1    Wu, J.C.2    Bengali, D.3    Potts, M.J.4
  • 73
    • 0018110116 scopus 로고
    • Prediction of the secondary structure of proteins from their amino acid sequence
    • P. Chou and G. Fasmann, “Prediction of the secondary structure of proteins from their amino acid sequence,” Adv. Enzymol., vol. 47, pp. 145–148, 1978.
    • (1978) Adv. Enzymol. , vol.47 , pp. 145-148
    • Chou, P.1    Fasmann, G.2
  • 74
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • S. K. Riis and A. Krogh, “Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments,” J. Comput. Biol., vol. 3, pp. 163–183, 1996.
    • (1996) J. Comput. Biol. , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 75
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular proteins using neural network models,” J. Mol. Biol., vol. 202, no. 4, pp. 865–884, 1988.
    • (1988) J. Mol. Biol. , vol.202 , Issue.4 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 76
    • 0028965118 scopus 로고
    • Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments
    • A. Salamov and V. Solovyev, “Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments,” J. Mol. Biol, vol. 247, pp. 11–15, 1995.
    • (1995) J. Mol. Biol , vol.247 , pp. 11-15
    • Salamov, A.1    Solovyev, V.2
  • 77
    • 0026674246 scopus 로고
    • Predicting protein secondary structure with a nearest-neighbor algorithm
    • S. Salzberg and S. Cost, “Predicting protein secondary structure with a nearest-neighbor algorithm,” J. Mol. Biol, vol. 227, pp. 371–374, 1992.
    • (1992) J. Mol. Biol , vol.227 , pp. 371-374
    • Salzberg, S.1    Cost, S.2
  • 78
    • 0029884694 scopus 로고    scopus 로고
    • GOR method for predicting protein secondary structure from amino acid sequence
    • J. Gamier, J. F. Gibrat, and B. Robson, “GOR method for predicting protein secondary structure from amino acid sequence,” in Methods in Enzymology, vol. 266, 1996, pp. 540–553.
    • (1996) Methods in Enzymology , vol.266 , pp. 540-553
    • Gamier, J.1    Gibrat, J.F.2    Robson, B.3
  • 79
    • 85063472174 scopus 로고
    • On the applicability of genetic algorithms to protein folding
    • R. Unger and J. Moult, “On the applicability of genetic algorithms to protein folding,” in Proc. Hawaii Int. Conf. System Sciences, vol. 1, 1993, pp. 715–725.
    • (1993) Proc. Hawaii Int. Conf. System Sciences , vol.1 , pp. 715-725
    • Unger, R.1    Moult, J.2
  • 80
    • 0027245418 scopus 로고
    • Genetic algorithms for protein folding simulations
    • R. Unger and J. Moult, “Genetic algorithms for protein folding simulations,” J. Mol. Biol, vol. 231, no. 1, pp. 75–81, 1993.
    • (1993) J. Mol. Biol , vol.231 , Issue.1 , pp. 75-81
    • Unger, R.1    Moult, J.2
  • 81
    • 1642289227 scopus 로고
    • A genetic algorithms for three dimensional protein folding simulations
    • R. Unger and J. Moult, “A genetic algorithms for three dimensional protein folding simulations,” in Int. Conf. Genetic Algorithms, 1993, pp. 581–588.
    • (1993) Int. Conf. Genetic Algorithms , pp. 581-588
    • Unger, R.1    Moult, J.2
  • 82
    • 0011484346 scopus 로고
    • A standard GA approach to native protein conformation prediction
    • A. Patton, E. Goldman, “A standard GA approach to native protein conformation prediction,” in Proc. Int. Conf. Genetic Algorithms, 1995, pp. 574–581.
    • (1995) Proc. Int. Conf. Genetic Algorithms , pp. 574-581
    • Patton, A.1    Goldman, E.2
  • 85
    • 0344513150 scopus 로고    scopus 로고
    • Use of a novel hill-climbing genetic algorithm in protein folding simulations
    • L. Cooper, D. Corne, and M. Crabbe, “Use of a novel hill-climbing genetic algorithm in protein folding simulations,” Comput. Biol. Chem., vol. 27, no. 6, pp. 575–580, 2003.
    • (2003) Comput. Biol. Chem. , vol.27 , Issue.6 , pp. 575-580
    • Cooper, L.1    Corne, D.2    Crabbe, M.3
  • 86
    • 15344339503 scopus 로고    scopus 로고
    • An efficient technique for superfamily classification of amino acid sequences: Feature extraction, fuzzy clustering and prototype selection
    • S. Bandyopadhyay, “An efficient technique for superfamily classification of amino acid sequences: Feature extraction, fuzzy clustering and prototype selection,” Fuzzy Sets Syst., vol. 152, pp. 5–16, 2005.
    • (2005) Fuzzy Sets Syst. , vol.152 , pp. 5-16
    • Bandyopadhyay, S.1
  • 87
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using real coded variable length genetic algorithm for pixel cassification
    • May
    • U. Maulik and S. Bandyopadhyay, “Fuzzy partitioning using real coded variable length genetic algorithm for pixel cassification,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5, pp. 1075–1081, May 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.5 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 88
    • 0028579103 scopus 로고
    • Incremental prediction of the side-chain conformation of proteins by a genetic algorithm
    • H. Iijima and Y. Naito, “Incremental prediction of the side-chain conformation of proteins by a genetic algorithm,” in Proc. IEEE Conf. Evolutionary Computation, vol. 1, 1994, pp. 362–367.
    • (1994) Proc. IEEE Conf. Evolutionary Computation , vol.1 , pp. 362-367
    • Iijima, H.1    Naito, Y.2
  • 90
    • 0242299188 scopus 로고    scopus 로고
    • Novel use of a genetic algorithm for protein structure prediction: Searching template and sequence alignment space
    • B. Contreras-Moreira, P. W. Fitzjohn, M. Offman, G. R. Smith, and P. A. Bates, “Novel use of a genetic algorithm for protein structure prediction: Searching template and sequence alignment space,” Proteins, vol. 53, no. 6, pp. 424-429, 2003.
    • (2003) Proteins , vol.53 , Issue.6 , pp. 424-429
    • Contreras-Moreira, B.1    Fitzjohn, P.W.2    Offman, M.3    Smith, G.R.4    Bates, P.A.5
  • 91
    • 0030873058 scopus 로고    scopus 로고
    • Probing Flp: A new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites
    • P. Saxena, I. Whang, Y. Voziyanov, C. Harkey, P. Argos, M. Jayaram, and T. Dandekar, “Probing Flp: A new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites,” Biochem. Biophys. Acta., vol. 1340, no. 2, pp. 187–204, 1997.
    • (1997) Biochem. Biophys. Acta. , vol.1340 , Issue.2 , pp. 187-204
    • Saxena, P.1    Whang, I.2    Voziyanov, Y.3    Harkey, C.4    Argos, P.5    Jayaram, M.6    Dandekar, T.7
  • 92
    • 0031556019 scopus 로고    scopus 로고
    • Protein folding simulations with genetic algorithms and a detailed molecular description
    • J. T. Pedersen and J. Moult, “Protein folding simulations with genetic algorithms and a detailed molecular description,” J. Mol. Biol., vol. 269, no. 2, pp. 240–259, 1997.
    • (1997) J. Mol. Biol. , vol.269 , Issue.2 , pp. 240-259
    • Pedersen, J.T.1    Moult, J.2
  • 93
    • 0005864682 scopus 로고    scopus 로고
    • Protein structure prediction as a hard optimization problem: The genetic algorithm approach
    • M. Khimasia and P. Coveney, “Protein structure prediction as a hard optimization problem: The genetic algorithm approach,” Mol. Simul., vol. 19, pp.205-226, 1997.
    • (1997) Mol. Simul. , vol.19 , pp. 205-226
    • Khimasia, M.1    Coveney, P.2
  • 94
    • 0142045029 scopus 로고    scopus 로고
    • Improving genetic algorithms for protein folding simulations by systematic crossover
    • R. Konig and T. Dandekar, “Improving genetic algorithms for protein folding simulations by systematic crossover,” BioSystems, vol. 50, pp. 17-25,1999.
    • (1999) BioSystems , vol.50 , pp. 17-25
    • Konig, R.1    Dandekar, T.2
  • 95
    • 0000223085 scopus 로고    scopus 로고
    • A parallel genetic algorithm for polypeptide three dimensional structure prediction: A transputer implementation
    • C. A. Del Carpio, “A parallel genetic algorithm for polypeptide three dimensional structure prediction: A transputer implementation,” J. Chem. Inf. Comput. Sci., vol. 36, no. 2, pp. 258–269, 1996.
    • (1996) J. Chem. Inf. Comput. Sci. , vol.36 , Issue.2 , pp. 258-269
    • Del Carpio, C.A.1
  • 96
    • 0029786785 scopus 로고    scopus 로고
    • Improved genetic algorithm for the protein folding problem by use of a cartesian combination operator
    • Rabow and H. A. Scheraga, “Improved genetic algorithm for the protein folding problem by use of a cartesian combination operator,” Protein Sci., vol. 5, pp. 1800–1815, 1996.
    • (1996) Protein Sci. , vol.5 , pp. 1800-1815
    • Rabow1    Scheraga, H.A.2
  • 97
    • 0000251664 scopus 로고    scopus 로고
    • Sampling protein conformations using segment libraries and a genetic algorithm, ”/
    • J. R. Gunn, “Sampling protein conformations using segment libraries and a genetic algorithm,”/. Chemi. Phys., vol. 106, pp. 4270-4281, 1997.
    • (1997) Chemi. Phys. , vol.106 , pp. 4270-4281
    • Gunn, J.R.1
  • 98
    • 0029564172 scopus 로고
    • Improved genetic algorithm-based protein structure comparisons: Pairwise and multiple superpositions
    • A. C. W. May and M. S. Johnson, “Improved genetic algorithm-based protein structure comparisons: Pairwise and multiple superpositions,” Protein Eng., vol. 8, pp. 873–882, 1995.
    • (1995) Protein Eng. , vol.8 , pp. 873-882
    • May, A.C.W.1    Johnson, M.S.2
  • 99
    • 0031940562 scopus 로고    scopus 로고
    • Genfold: A genetic algorithm for folding protein structures using NMR restraints
    • M. J. Bayley, G. Jones, P. Willett, and M. P. Williamson, “Genfold: A genetic algorithm for folding protein structures using NMR restraints,” Protein Sci., vol. 7, no. 2, pp. 491–499, 1998.
    • (1998) Protein Sci. , vol.7 , Issue.2 , pp. 491-499
    • Bayley, M.J.1    Jones, G.2    Willett, P.3    Williamson, M.P.4
  • 100
    • 53149107105 scopus 로고    scopus 로고
    • Protein structure prediction in a 210-type lattice model: Parameter optimization in the genetic algorithm using orthogonal array
    • Z. Sun, X. Xia, Q. Guo, and D. Xu, “Protein structure prediction in a 210-type lattice model: Parameter optimization in the genetic algorithm using orthogonal array,” J. Protein Chem., vol. 18, no. 1, pp. 39-46,1999.
    • (1999) J. Protein Chem. , vol.18 , Issue.1 , pp. 39-46
    • Sun, Z.1    Xia, X.2    Guo, Q.3    Xu, D.4
  • 101
    • 0034572961 scopus 로고    scopus 로고
    • Genetic algorithms and protein folding. Methods in molecular biology
    • S. Schulze-Kremer, “Genetic algorithms and protein folding. Methods in molecular biology,” Protein Structure Prediction: Methods and Protocols, vol. 143, pp. 175–222, 2000.
    • (2000) Protein Structure Prediction: Methods and Protocols , vol.143 , pp. 175-222
    • Schulze-Kremer, S.1
  • 102
    • 0010649742 scopus 로고    scopus 로고
    • Introduction to Bioinformatics
    • London, U.K.: Oxford Univ. Press
    • A. M. Lesk, Introduction to Bioinformatics. London, U.K.: Oxford Univ. Press, 2002.
    • (2002)
    • Lesk, A.M.1
  • 103
    • 0041404869 scopus 로고
    • Genetic algorithms for docking of actinomycin D and deoxyguanosine molecules with comparison to the crystal structure of actinomycin ddeoxyguanosine complex
    • Y. Xiao and D. Williams, “Genetic algorithms for docking of actinomycin D and deoxyguanosine molecules with comparison to the crystal structure of actinomycin ddeoxyguanosine complex,” J. Phys. Chem., vol. 98, pp. 7191–7200, 1994.
    • (1994) J. Phys. Chem. , vol.98 , pp. 7191-7200
    • Xiao, Y.1    Williams, D.2
  • 105
    • 11644261806 scopus 로고    scopus 로고
    • Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
    • G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olsoni, “Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function,”J. Comput. Chem., vol. 19, no. 14, pp. 1639–1662, 1998.
    • (1998) J. Comput. Chem. , vol.19 , Issue.14 , pp. 1639-1662
    • Morris, G.M.1    Goodsell, D.S.2    Halliday, R.S.3    Huey, R.4    Hart, W.E.5    Belew, R.K.6    Olsoni, A.J.7
  • 107
    • 28044464697 scopus 로고    scopus 로고
    • Active site driven ligand design: An evolutionary approach
    • S. Bandyopadhyay, A. Bagchi, and U. Maulik, “Active site driven ligand design: An evolutionary approach,” J. Bioinf. Comput. Biol., vol. 3, no. 5, pp. 1053–1070, 2005.
    • (2005) J. Bioinf. Comput. Biol. , vol.3 , Issue.5 , pp. 1053-1070
    • Bandyopadhyay, S.1    Bagchi, A.2    Maulik, U.3
  • 108
    • 0032284634 scopus 로고    scopus 로고
    • Molecular binding in structure-based drug design: A case study of the population-based annealing genetic algorithms
    • C. Chen, L. H. Wang, C. Kao, M. Ouhyoung, and W. Chen, “Molecular binding in structure-based drug design: A case study of the population-based annealing genetic algorithms,” in Proc. IEEE Int. Conf. Tools with Artificial Intelligence, 1998, pp. 328–335.
    • (1998) Proc. IEEE Int. Conf. Tools with Artificial Intelligence , pp. 328-335
    • Chen, C.1    Wang, L.H.2    Kao, C.3    Ouhyoung, M.4    Chen, W.5
  • 112
    • 0034257895 scopus 로고    scopus 로고
    • A family competition evolutionary algorithm for automated docking of flexible ligands to proteins
    • Sep.
    • J. M. Yang and C. Y. Kao, “A family competition evolutionary algorithm for automated docking of flexible ligands to proteins,” IEEE Trans. Inf. Technol. Biomed., vol. 4, no. 3, pp. 225–237, Sep. 2000.
    • (2000) IEEE Trans. Inf. Technol. Biomed. , vol.4 , Issue.3 , pp. 225-237
    • Yang, J.M.1    Kao, C.Y.2
  • 113
    • 0029283717 scopus 로고
    • Flexible ligand docking using a genetic algorithm
    • C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand docking using a genetic algorithm,” J. Comput.-Aided Mol. Design, vol. 9, no. 2, pp.113-130, 1995.
    • (1995) J. Comput.-Aided Mol. Design , vol.9 , Issue.2 , pp. 113-130
    • Oshiro, C.M.1    Kuntz, I.D.2    Dixon, J.S.3
  • 114
    • 0030203970 scopus 로고    scopus 로고
    • Evolutionary algorithms in computer-aided molecular design
    • D. E. Clark and D. R. Westhead, “Evolutionary algorithms in computer-aided molecular design,” J. Comput.-Aided Mol. Design, vol. 10, no. 4, pp. 337–358, 1996.
    • (1996) J. Comput.-Aided Mol. Design , vol.10 , Issue.4 , pp. 337-358
    • Clark, D.E.1    Westhead, D.R.2
  • 115
    • 0028500262 scopus 로고
    • Computer aided molecular design using genetic algorithms
    • V. Venkatasubramanian, K. Chan, and J. Caruthers, “Computer aided molecular design using genetic algorithms,” Comput. Chem. Eng., vol. 18, no. 9, pp. 833–844, 1994.
    • (1994) Comput. Chem. Eng. , vol.18 , Issue.9 , pp. 833-844
    • Venkatasubramanian, V.1    Chan, K.2    Caruthers, J.3
  • 116
    • 0001489865 scopus 로고
    • Molecular-geometry optimization with a genetic algorithm
    • D. M. Deaven and K. O. Ho, “Molecular-geometry optimization with a genetic algorithm,” Phys. Rev. Lett., vol. 75, no. 2, pp. 288–291, 1995.
    • (1995) Phys. Rev. Lett. , vol.75 , Issue.2 , pp. 288-291
    • Deaven, D.M.1    Ho, K.O.2
  • 117
    • 0028854034 scopus 로고
    • Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation
    • G. Jones, P. Willett, and R. C. Glen, “Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation,” J. Mol. Biol., vol. 245, pp. 43–53, 1995.
    • (1995) J. Mol. Biol. , vol.245 , pp. 43-53
    • Jones, G.1    Willett, P.2    Glen, R.C.3
  • 118
    • 0040196029 scopus 로고    scopus 로고
    • Further development of a genetic algorithm for ligand docking and its application to screening combinatorial libraries
    • Washington, DC: ACS
    • G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Further development of a genetic algorithm for ligand docking and its application to screening combinatorial libraries,” American Chemical Society Symposium Series, vol. 719, Washington, DC: ACS, 1999, pp. 271–291.
    • (1999) American Chemical Society Symposium Series , vol.719 , pp. 271-291
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 119
    • 84913584731 scopus 로고
    • Analysis of the genetic algorithm method of molecular conformation determination
    • D. B. McGarrah and R. S. Judson, “Analysis of the genetic algorithm method of molecular conformation determination,” J. Comput. Chem., vol. 14, no. 11, pp. 1385–1395, 1993.
    • (1993) J. Comput. Chem. , vol.14 , Issue.11 , pp. 1385-1395
    • McGarrah, D.B.1    Judson, R.S.2
  • 120
    • 0032885355 scopus 로고    scopus 로고
    • Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search
    • T. Hou, J. Wang, L. Chen, and X. Xu, “Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search,” Protein Eng., vol. 12, pp. 639–647, 1999.
    • (1999) Protein Eng. , vol.12 , pp. 639-647
    • Hou, T.1    Wang, J.2    Chen, L.3    Xu, X.4
  • 121
    • 0028863971 scopus 로고
    • Genetic algorithms in molecular recognition and design
    • P. Willet, “Genetic algorithms in molecular recognition and design,” Trends Biotechnol., vol. 13, no. 12, pp. 516–521, 1995.
    • (1995) Trends Biotechnol. , vol.13 , Issue.12 , pp. 516-521
    • Willet, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.