메뉴 건너뛰기




Volumn 19, Issue , 2014, Pages 372-386

Support vector machine applications in the field of hydrology: A review

Author keywords

Hydrological models; Optimization theory; Statistical learning; Support vector machines

Indexed keywords

ALGORITHMS; HYDROLOGY; SITE SELECTION;

EID: 84899447875     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.02.002     Document Type: Review
Times cited : (584)

References (75)
  • 1
    • 84856696488 scopus 로고    scopus 로고
    • Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods
    • I.G. Pechlivanidis, B.M. Jackson, N.R. Mcintyre, and H.S. Wheater Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods Global NEST Journal 13 3 2011 193 214
    • (2011) Global NEST Journal , vol.13 , Issue.3 , pp. 193-214
    • Pechlivanidis, I.G.1    Jackson, B.M.2    McIntyre, N.R.3    Wheater, H.S.4
  • 3
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Y.S. Xinying, V. Liong, and Babovic EC-SVM approach for real-time hydrologic forecasting Journal of Hydroinformatics 6 3 2004 209 223
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Xinying, Y.S.1    Liong, V.2
  • 6
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • M. Mozer, M. Jordan, T. Petsche, MIT Press Cambridge, MA, USA
    • V. Vapnik, S. Golwich, and A.J. Smola Support vector method for function approximation, regression estimation and signal processing M. Mozer, M. Jordan, T. Petsche, Advances in Neural Information Processing Systems vol. 9 1997 MIT Press Cambridge, MA, USA 281 287
    • (1997) Advances in Neural Information Processing Systems , vol.9 VOL. , pp. 281-287
    • Vapnik, V.1    Golwich, S.2    Smola, A.J.3
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support Vector Machines for large-scale regression problems
    • R. Collobert, and S. Bengio SVMTorch: support vector machines for large-scale regression problems Journal of Machine Learning Research 1 2001 143 160 (Pubitemid 33738779)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 33947301110 scopus 로고    scopus 로고
    • Support Vector Machine Implementations for Classification and Clustering
    • S. Winters-Hilt, A. Yelundur, C. McChesney, and M. Landry Support Vector Machine Implementations for Classification and Clustering BMC Bioinformatics 7 Suppl. 2 2006 S4
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 2 , pp. 4
    • Winters-Hilt, S.1    Yelundur, A.2    McChesney, C.3    Landry, M.4
  • 16
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. Vapnik An overview of statistical learning theory IEEE Transactions on Neural Networks 10 5 1999 988 999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 18
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • J. Shavlik, Morgan Kaufmann San Francisco, CA
    • P.S. Bradley, and O.L. Mangasarian Feature selection via concave minimization and support vector machines J. Shavlik, The Fifteenth International Conference of Machine Learning 1998 Morgan Kaufmann San Francisco, CA 82 90
    • (1998) The Fifteenth International Conference of Machine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 23
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Y.B. Dibike, S. Velickov, D. Solomatine, and M.B. Abbott Model induction with support vector machines: introduction and application Journal of Computing in Civil Engineering 15 3 2001 208 216 (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 24
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modelling
    • M. Bray, and D. Han Identification of support vector machines for runoff modelling Journal of Hydroinformatics 6 4 2004 265 280
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 25
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • DOI 10.1016/j.jhydrol.2006.04.030, PII S0022169406002368
    • S.H. Tripathi, V.V. Srinivas, and R.S. Nanjundiah Downscaling of precipitation for climate change scenarios: a support vector machine approach Journal of Hydrology 330 2006 621 640 (Pubitemid 44573197)
    • (2006) Journal of Hydrology , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 27
    • 79958260318 scopus 로고    scopus 로고
    • Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin
    • 10.1007/s00376-009-8071-1
    • H. Chen, J. Guo, and X. Wei Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin Advances in Atmospheric Sciences 27 2 2010 274 284 10.1007/s00376-009-8071-1
    • (2010) Advances in Atmospheric Sciences , vol.27 , Issue.2 , pp. 274-284
    • Chen, H.1    Guo, J.2    Wei, X.3
  • 28
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long term discharge prediction
    • 10.1623/hysj.51.4.599
    • Y.L. Jian, T.C. Chun, and W.Ch. Kwok Using support vector machines for long term discharge prediction Hydrological Sciences Journal 51 4 2006 599 612 10.1623/hysj.51.4.599
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Jian, Y.L.1    Chun, T.C.2    Kwok, W.Ch.3
  • 29
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • 10.1623/hysj.53.3.656A
    • C. Mesut Estimation of daily suspended sediments using support vector machines Hydrological Sciences Journal 53 3 2008 656 666 10.1623/hysj.53.3.656A
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.3 , pp. 656-666
    • Mesut, C.1
  • 30
    • 58949092610 scopus 로고    scopus 로고
    • Application of support vector machines in scour prediction on grade-control structures
    • 10.1016/j.engappai.2008.05.008
    • G. Arun, and P. Mahesh Application of support vector machines in scour prediction on grade-control structures Engineering Applications of Artificial Intelligence 22 2009 216 223 10.1016/j.engappai.2008.05.008
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 216-223
    • Arun, G.1    Mahesh, P.2
  • 31
    • 67650621579 scopus 로고    scopus 로고
    • Application and analysis of support vector machine based simulation for runoff and sediment yield
    • 10.1016/j.biosystemseng.2009.04.017
    • M. Debasmita, O. Thomas, A. Avinash, K.M. Surendra, and M.T. Anita Application and analysis of support vector machine based simulation for runoff and sediment yield Bio Systems Engineering 103 2009 527 535 10.1016/j. biosystemseng.2009.04.017
    • (2009) Bio Systems Engineering , vol.103 , pp. 527-535
    • Debasmita, M.1    Thomas, O.2    Avinash, A.3    Surendra, K.M.4    Anita, M.T.5
  • 33
    • 84863738678 scopus 로고    scopus 로고
    • Streamflow forecasting at ungaged sites using support vector machines
    • A.Z. Zahrahtul, and S. Ani Streamflow forecasting at ungaged sites using support vector machines Applied Mathematical Sciences 6 60 2012 3003 3014
    • (2012) Applied Mathematical Sciences , vol.6 , Issue.60 , pp. 3003-3014
    • Zahrahtul, A.Z.1    Ani, S.2
  • 34
    • 84893757670 scopus 로고    scopus 로고
    • Multistep-ahead river flow prediction using LS-SVR at daily scale
    • 10.4236/jwarp.2012.47062
    • P. Parag, Bhagwat, and M. Rajib Multistep-ahead river flow prediction using LS-SVR at daily scale Journal of Water Resource and Protection 4 2012 528 539 10.4236/jwarp.2012.47062
    • (2012) Journal of Water Resource and Protection , vol.4 , pp. 528-539
    • Parag, P.1    Bhagwat2    Rajib, M.3
  • 37
    • 84859998211 scopus 로고    scopus 로고
    • Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs
    • 10.4236/eng.2011.34049
    • S. Pijush Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs Engineering 3 4 2011 431 434 10.4236/eng.2011.34049
    • (2011) Engineering , vol.3 , Issue.4 , pp. 431-434
    • Pijush, S.1
  • 38
    • 84861225166 scopus 로고    scopus 로고
    • SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment
    • T. Hossein, K. Ozgur, E. Azadeh, and P.T. Hosseinzadeh SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment Journal of Hydrology 444-445 2012 78 89
    • (2012) Journal of Hydrology , vol.444-445 , pp. 78-89
    • Hossein, T.1    Ozgur, K.2    Azadeh, E.3    Hosseinzadeh, P.T.4
  • 39
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • 10.1061/(ASCE)1084-0699(2006)11:3(199)
    • S.M. Khan, and P. Coulibaly Application of support vector machine in lake water level prediction Journal of Hydrologic Engineering ASCE 11 2006 199 205 10.1061/(ASCE)1084-0699(2006)11:3(199)
    • (2006) Journal of Hydrologic Engineering ASCE , vol.11 , pp. 199-205
    • Khan, S.M.1    Coulibaly, P.2
  • 40
    • 84880039776 scopus 로고    scopus 로고
    • Daily forecasting of dam water levels: Comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)
    • 10.1007/s11269-013-0382-4
    • H. Afiq, E. Ahmed, N. Ali, A. Othman, K. Aini, and H.M. Mukhlisi Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS) Water Resources Management 27 2013 3803 3823 10.1007/s11269-013-0382-4
    • (2013) Water Resources Management , vol.27 , pp. 3803-3823
    • Afiq, H.1    Ahmed, E.2    Ali, N.3    Othman, A.4    Aini, K.5    Mukhlisi, H.M.6
  • 41
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • P.S. Yu, S.T. Chen, and I.F. Chang Support vector regression for real-time flood stage forecasting Journal of Hydrology 328 2006 704 716
    • (2006) Journal of Hydrology , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 42
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • D. Han, L. Chan, and N. Zhu Flood forecasting using support vector machines Journal of Hydroinformatics 9 4 2007 267 276
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.4 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 43
    • 40449106730 scopus 로고    scopus 로고
    • Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture
    • 10.1007/978-0-387-77251-6-25
    • W. Wei, X. Wang, D. Xie, and H. Liu Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture International Federation for Information Processing 258 2007 223 230 10.1007/978-0-387-77251-6-25
    • (2007) International Federation for Information Processing , vol.258 , pp. 223-230
    • Wei, W.1    Wang, X.2    Xie, D.3    Liu, H.4
  • 44
    • 35748941976 scopus 로고    scopus 로고
    • Pruning of support vector networks on flood forecasting
    • S.T. Chen, and P.S. Yu Pruning of support vector networks on flood forecasting Journal of Hydrology 347 2007 67 78
    • (2007) Journal of Hydrology , vol.347 , pp. 67-78
    • Chen, S.T.1    Yu, P.S.2
  • 45
    • 34249895257 scopus 로고    scopus 로고
    • Real-time probabilistic forecasting of flood stages
    • S.T. Chen, and P.S. Yu Real-time probabilistic forecasting of flood stages Journal of Hydrology 340 1-2 2007 63 77
    • (2007) Journal of Hydrology , vol.340 , Issue.12 , pp. 63-77
    • Chen, S.T.1    Yu, P.S.2
  • 48
    • 84906310206 scopus 로고    scopus 로고
    • Ensemble prediction of regional droughts using climate inputs and the SVM - Copula approach
    • 10.1002/hyp.9966
    • P. Ganguli, and M.J. Reddy Ensemble prediction of regional droughts using climate inputs and the SVM - copula approach Hydrological Processes 2013 10.1002/hyp.9966
    • (2013) Hydrological Processes
    • Ganguli, P.1    Reddy, M.J.2
  • 50
    • 77955765168 scopus 로고    scopus 로고
    • Comparative study of SVMs and ANNs in aquifer water level prediction
    • 10.1061/(ASCE)CP.1943-5487.0000043.h
    • B. Mohsen, A. Keyvan, A. Emery, and Coppola Jr. Comparative study of SVMs and ANNs in aquifer water level prediction Journal of Computing in Civil Engineering 24 5 2010 10.1061/(ASCE)CP.1943-5487.0000043.h
    • (2010) Journal of Computing in Civil Engineering , vol.24 , Issue.5
    • Mohsen, B.1    Keyvan, A.2    Emery, A.3    Coppola, J.4
  • 51
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • 10.1016/j.jhydrol.2010.11.002
    • Y. Heesung, S.C. Jun, H. Yunjung, G.O. Bae, and K.L. Kang A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer Journal of Hydrology 396 2011 128 138 10.1016/j.jhydrol.2010.11.002
    • (2011) Journal of Hydrology , vol.396 , pp. 128-138
    • Heesung, Y.1    Jun, S.C.2    Yunjung, H.3    Bae, G.O.4    Kang, K.L.5
  • 52
    • 33748030511 scopus 로고    scopus 로고
    • Soil moisture prediction using support vector machines
    • DOI 10.1111/j.1752-1688.2006.tb04512.x
    • M.K. Gill, T. Asefa, M.W. Kemblowski, and M. McKee Soil moisture prediction using support vector machines JAWRA Journal of the American Water Resources Association 42 2006 1033 1046 10.1111/j.1752-1688.2006.tb04512.x (Pubitemid 44870396)
    • (2006) Journal of the American Water Resources Association , vol.42 , Issue.4 , pp. 1033-1046
    • Gill, M.K.1    Asefa, T.2    Kemblowski, M.W.3    McKee, M.4
  • 53
    • 71649099637 scopus 로고    scopus 로고
    • Estimating soil moisture using remote sensing data: A machine learning approach
    • 10.1016/j.advwatres.2009.10.008
    • A. Sajjad, K. Ajay, and S. Haroon Estimating soil moisture using remote sensing data: a machine learning approach Advances in Water Resources 33 2010 69 80 10.1016/j.advwatres.2009.10.008
    • (2010) Advances in Water Resources , vol.33 , pp. 69-80
    • Sajjad, A.1    Ajay, K.2    Haroon, S.3
  • 56
    • 84859425235 scopus 로고    scopus 로고
    • Precipitation forecasting by using wavelet-support vector machine conjunction model
    • K. Ozgur, and C. Mesut Precipitation forecasting by using wavelet-support vector machine conjunction model Engineering Applications of Artificial Intelligence 25 2012 783 792
    • (2012) Engineering Applications of Artificial Intelligence , vol.25 , pp. 783-792
    • Ozgur, K.1    Mesut, C.2
  • 57
    • 84863003352 scopus 로고    scopus 로고
    • Wavelet support vector machines for forecasting precipitation in tropical cyclones: Comparisons with GSVM, regression, and MM5
    • C.-C. Wei Wavelet support vector machines for forecasting precipitation in tropical cyclones: comparisons with GSVM, regression, and MM5 Weather and Forecasting 27 2012 438 450
    • (2012) Weather and Forecasting , vol.27 , pp. 438-450
    • Wei, C.-C.1
  • 58
    • 84868623982 scopus 로고    scopus 로고
    • Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    • 10.1016/j.neucom.2012.07.017
    • C.H. Sudheer, A.B.K. Nitin, Panigrahi, and M. Shashi Streamflow forecasting by SVM with quantum behaved particle swarm optimization Neurocomputing 101 2013 18 23 10.1016/j.neucom.2012.07.017
    • (2013) Neurocomputing , vol.101 , pp. 18-23
    • Sudheer, C.H.1    Nitin, A.B.K.2    Panigrahi3    Shashi, M.4
  • 61
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • K.B. Lipkowitz, T.R. Cundari, Wiley-VCH Weinheim
    • I. Ovidiu Applications of support vector machines in chemistry K.B. Lipkowitz, T.R. Cundari, Reviews in Computational Chemistry vol. 23 2007 Wiley-VCH Weinheim 291 400
    • (2007) Reviews in Computational Chemistry , vol.23 VOL. , pp. 291-400
    • Ovidiu, I.1
  • 62
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • DOI 10.1016/S0893-6080(03)00169-2
    • V. Cherkassky, and Y. Ma Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 17 2004 113 126 (Pubitemid 38019003)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 67
    • 84976240292 scopus 로고    scopus 로고
    • Applications of SVMs in the exploratory phase of petroleum and natural gas: A survey
    • C. Yuri Applications of SVMs in the exploratory phase of petroleum and natural gas: a survey International Journal of Engineering and Technology 2 2 2013 113 125
    • (2013) International Journal of Engineering and Technology , vol.2 , Issue.2 , pp. 113-125
    • Yuri, C.1
  • 69
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • C.L. Wu, K.W. Chau, and Y.S. Li River stage prediction based on a distributed support vector regression Journal of Hydrology 358 2008 96 111
    • (2008) Journal of Hydrology , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 72
    • 27644543634 scopus 로고    scopus 로고
    • Ant colony optimization theory: A survey
    • DOI 10.1016/j.tcs.2005.05.020, PII S0304397505003798
    • M. Dorigo, and C. Blum Ant colony optimization theory: a survey Theoretical Computer Science 344 2005 243 278 (Pubitemid 41554100)
    • (2005) Theoretical Computer Science , vol.344 , Issue.2-3 , pp. 243-278
    • Dorigo, M.1    Blum, C.2
  • 75
    • 84899425236 scopus 로고    scopus 로고
    • Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications
    • N.B.A. Seyyed, K. Reza, R.B.L. Mohammad, and S. Kazem Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications An International Journal archive 37 10 2010 7154 7161
    • (2010) An International Journal Archive , vol.37 , Issue.10 , pp. 7154-7161
    • Seyyed, N.B.A.1    Reza, K.2    Mohammad, R.B.L.3    Kazem, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.