메뉴 건너뛰기




Volumn 331, Issue , 2009, Pages 41-50

Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme

Author keywords

Flood; Gamma test; Hybrid models; Model selection; Neural networks; Support vector machine

Indexed keywords

ENGLAND; FLOOD FORECASTING; FLOOD FORECASTING MODELS; FLOOD MITIGATION; GAMMA TEST; HYBRID MODEL; MODEL SELECTION; NOVEL TECHNIQUES; RAINFALL-RUNOFF MODELLING; REAL TIME; SMALL WATERSHEDS; STATISTICAL LEARNING THEORY; STRUCTURAL APPROACH; TRAINING DATA;

EID: 78751666931     PISSN: 01447815     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (18)
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Engng 5(2), 124-137.
    • (2000) J. Hydrol. Engng , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modelling
    • Bray, M. & Han, D. (2004) Identification of support vector machines for runoff modelling. J. Hydroinf. 6(4), 265-280.
    • (2004) J. Hydroinf. , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 5
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • Daubechies, I. (1988) Orthonormal bases of compactly supported wavelets. Commun. PureAppl. Math. 41,909-996.
    • (1988) Commun. PureAppl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 8
    • 84899013173 scopus 로고    scopus 로고
    • Support vector regression machines
    • (ed. by M. Mozer, M. Jordan & T. Petsche). MIT Press, Cambridge, Massachusetts, USA
    • Drucker, H., Burges, C. J. C, Kaufman, L., Smola, A. & Vapnik, V. (1997) Support vector regression machines. In: Advances in Neural Information Processing Systems (ed. by M. Mozer, M. Jordan & T. Petsche), vol. 9, 155-161. MIT Press, Cambridge, Massachusetts, USA.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.C.2    Kaufman, L.3    Smola, A.4    Vapnik, V.5
  • 10
    • 57249098752 scopus 로고    scopus 로고
    • A proof of the gamma test
    • Evans, D. & Jones, A. J. (2002) A proof of the gamma test. Proc. Roy. Soc. A 458(2027), 2759-2799.
    • (2002) Proc. Roy. Soc. A , vol.458 , Issue.2027 , pp. 2759-2799
    • Evans, D.1    Jones, A.J.2
  • 11
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • DOI 10.1002/hyp.5502
    • Jain, A., Sudheer, K. P. & Srinivasulu, S. (2004) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Processes 18, 571-581. doi:10.1002/hyp.5502. (Pubitemid 38300814)
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 12
    • 33847740591 scopus 로고    scopus 로고
    • Assessment of rainfall-runoff models based upon wavelet analysis
    • doi::0.1002/hyp.6249
    • Lane, S. N. (2007) Assessment of rainfall-runoff models based upon wavelet analysis. Hydrol. Processes 21, 586-607. doi::0.1002/hyp.6249.
    • (2007) Hydrol. Processes , vol.21 , pp. 586-607
    • Lane, S.N.1
  • 13
    • 0000562670 scopus 로고
    • Decomposition of Hardy functions into square integrable wavelets of constant shape
    • Morlet, J. M. & Grossman, A. (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape.. SIAMJ. Math. Anal. 15(4), 723-736.
    • (1984) SIAM J. Math. Anal. , vol.15 , Issue.4 , pp. 723-736
    • Morlet, J.M.1    Grossman, A.2
  • 14
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • DOI 10.1016/j.jhydrol.2003.12.010, PII S0022169403005134
    • Nayak, P. C, Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. (2004) A neuro-fuzzy computing technique for modelling hydrological time series. J. Hydrol. 291,52-66. doi:10.1016/j.jhydrol.2003.12.010. (Pubitemid 38492436)
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 15
    • 65749117808 scopus 로고    scopus 로고
    • Model data selection using gamma test for daily solar radiation estimation
    • Remesan, R., Shamim, M. A. & Han, D. (2008) Model data selection using gamma test for daily solar radiation estimation. Hydrol. Processes 22,4301-4309.
    • (2008) Hydrol. Processes , vol.22 , pp. 4301-4309
    • Remesan, R.1    Shamim, M.A.2    Han, D.3
  • 16
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an integrated hybrid modelling scheme
    • Remesan, R., Shamim, M. A. & Han, D. (2009) Runoff prediction using an integrated hybrid modelling scheme. J. Hydrol. 372(1-4), 48-60.
    • (2009) J. Hydrol. , vol.372 , Issue.1-4 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3
  • 18
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P.-S., Chen, S.-T. & Chang, I.-F. (2006) Support vector regression for real-time flood stage forecasting. J. Hydrol. 328(3/4), 704-716.
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.-S.1    Chen, S.-T.2    Chang, I.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.