-
2
-
-
84899013173
-
Support vector regression machines
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), The MIT Press
-
Drucker, H., Burges, C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in Neural Information Processing Systems 9 (pp. 155-161). The MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
3
-
-
24044489058
-
Efficient SVM regression training with SMO
-
Flake, G., & Lawrence, S. (2000). Efficient SVM regression training with SMO. (Submitted to Machine Learning. Available at http://external.nj.nec.com/homepages/flake/smorch.ps)
-
(2000)
Machine Learning
-
-
Flake, G.1
Lawrence, S.2
-
5
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), The MIT Press
-
Joachims, T. (1999). Making large-scale support vector machine learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel Methods. The MIT Press.
-
(1999)
Advances in Kernel Methods
-
-
Joachims, T.1
-
6
-
-
0013372215
-
-
(Tech. Rep. No. CD-00-01). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore
-
Keerthi, S. S., & Gilbert, E. G. (2000). Convergence of a Generalized SMO Algorithm for SVM Classifier Design (Tech. Rep. No. CD-00-01). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore. (Available at http://guppy.mpe.nus.edu.sg/~mpessk/svm/conv_ml.ps.gz)
-
(2000)
Convergence of a Generalized SMO Algorithm for SVM Classifier Design
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
7
-
-
0004098720
-
Improvements to Platt's SMO Algorithm for SVM Classifier Design
-
(Tech. Rep. No. CD-99-14). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore
-
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (1999). Improvements to Platt's SMO Algorithm for SVM Classifier Design (Tech. Rep. No. CD-99-14). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore. (To appear in Neural Computation. Available at http://guppy.mpe.nus.edu.sg/~mpessk/smo_mod.ps.gz)
-
(1999)
Neural Computation
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
8
-
-
84898947865
-
An improved decomposition algorithm for regression support vector machines
-
S. Solla, T. Leen, & K.-R. Müller (Eds.), The MIT Press
-
Laskov, P. (2000). An improved decomposition algorithm for regression support vector machines. In S. Solla, T. Leen, & K.-R. Müller (Eds.), Advances in Neural Information Processing Systems 12. The MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Laskov, P.1
-
10
-
-
84956628443
-
Predicting time series with support vector machines
-
W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Springer
-
Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Artificial Neural Networks - ICANN'97 (pp. 999-1004). Springer.
-
(1997)
Artificial Neural Networks - ICANN'97
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
11
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Giles, N. Morgan, & E. Wilson (Eds.), New York: IEEE Press
-
Osuna, E., Freund, R., & Girosi, F. (1997). An improved training algorithm for support vector machines. In J. Principe, L. Giles, N. Morgan, & E. Wilson (Eds.), Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop (pp. 276-285). New York: IEEE Press.
-
(1997)
Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
12
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), The MIT Press
-
Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel Methods. The MIT Press.
-
(1999)
Advances in Kernel Methods
-
-
Platt, J.C.1
-
13
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Transaction on Neural Networks, 11(5), 1188-1183.
-
(2000)
IEEE Transaction on Neural Networks
, vol.11
, Issue.5
, pp. 1188-11183
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
14
-
-
0003401675
-
-
(Tech. Rep. No. NeuroCOLT NC-TR-98-030). Royal Holloway College,University of London, UK
-
Smola, A., & Schölkopf, B. (1998). A Tutorial on Support Vector Regression (Tech. Rep. No. NeuroCOLT NC-TR-98-030). Royal Holloway College,University of London, UK.
-
(1998)
A Tutorial on Support Vector Regression
-
-
Smola, A.1
Schölkopf, B.2
|