-
1
-
-
78650453391
-
Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation
-
MR 2763335. DOI 10.1080/03605302.2010.513410. (380)
-
V. BANICA, R. CARLES, and T. DUYCKAERTS, Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation, Comm. Partial Differential Equations 36 (2011), 487-531. MR 2763335. DOI 10.1080/03605302.2010.513410. (380)
-
(2011)
Comm. Partial Differential Equations
, vol.36
, pp. 487-531
-
-
Banica, V.1
Carles, R.2
Duyckaerts, T.3
-
2
-
-
0000817006
-
Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
-
MR 0646873. (371)
-
H. BERESTYCKI and T. CAZENAVE, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 489-492. MR 0646873. (371)
-
(1981)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.293
, pp. 489-492
-
-
Berestycki, H.1
Cazenave, T.2
-
3
-
-
0000246714
-
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
-
MR 1655515. (371, 380)
-
J. BOURGAIN and W. WANG, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197-215 (1998). MR 1655515. (371, 380)
-
(1997)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.25
, Issue.4
, pp. 197-215
-
-
Bourgain, J.1
Wang, W.2
-
4
-
-
5444256656
-
Semilinear Schrödinger Equations
-
New York Univ., Courant Inst. Math. Sci., New York, MR 2002047. (370, 372)
-
T. CAZENAVE, Semilinear Schrödinger Equations, Courant Lecture Notes in Math. 10, New York Univ., Courant Inst. Math. Sci., New York, 2003. MR 2002047. (370, 372)
-
(2003)
Courant Lecture Notes in Math.
, vol.10
-
-
Cazenave, T.1
-
5
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
MR 0677997. (371)
-
T. CAZENAVE and P.-L. LIONS, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561. MR 0677997. (371)
-
(1982)
Comm. Math. Phys.
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.-L.2
-
6
-
-
48249147411
-
Spectra of linearized operators for NLS solitary waves
-
MR 2368894. DOI 10.1137/050648389. (376, 386, 411)
-
S.-M. CHANG, S. GUSTAFSON, K. NAKANISHI, and T.-P. TSAI, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007), 1070-1111. MR 2368894. DOI 10.1137/050648389. (376, 386, 411)
-
(2007)
SIAM J. Math. Anal.
, vol.39
, pp. 1070-1111
-
-
Chang, S.-M.1
Gustafson, S.2
Nakanishi, K.3
Tsai, T.-P.4
-
7
-
-
0042154193
-
L3;1-solutions of Navier-Stokes equations and backward uniqueness
-
3-44, no. 2, translation in Russian Math. Surveys. MR 1992563. DOI 10.1070/RM2003v058n02ABEH000609. (372)
-
L. ESCAURIAZA, G. A. SEREGIN, and V. SVVERAK, L3;1-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2(350), 3-44; translation in Russian Math. Surveys 58 (2003), no. 2, 211-250. MR 1992563. DOI 10.1070/RM2003v058n02ABEH000609. (372)
-
(2003)
Uspekhi Mat. Nauk
, vol.58
, Issue.350
, pp. 211-250
-
-
Escauriaza, L.1
Seregin, A.2
Svverak, V.3
-
8
-
-
34249993538
-
Singular ring solutions of critical and supercritical nonlinear Schrödinger equations
-
MR 2370365. DOI 10.1016/j.physd.2007.04.007. (373, 376, 377)
-
G. FIBICH, N. GAVISH, and X.-P. WANG, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Phys. D 231 (2007), 55-86. MR 2370365. DOI 10.1016/j.physd.2007.04.007. (373, 376, 377)
-
(2007)
Phys. D
, vol.231
, pp. 55-86
-
-
Fibich, G.1
Gavish, N.2
Wang, X.-P.3
-
9
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
MR 0544879. (371)
-
B. GIDAS, W. M. NI, and L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 0544879. (371)
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
10
-
-
49249148441
-
On a class of nonlinear Schrödinger equations I: The Cauchy problem, general case
-
MR 0533218. DOI 10.1016/0022-1236(79)90076-4. (370)
-
J. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equations, I: The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-32. MR 0533218. DOI 10.1016/0022-1236(79)90076-4. (370)
-
(1979)
J. Funct. Anal.
, vol.32
, pp. 1-32
-
-
Ginibre, J.1
Velo, G.2
-
11
-
-
79952911434
-
A class of solutions to the 3d cubic nonlinear Schrödinger equation that blow-up on a circle
-
MR 2782553. (372)
-
J. HOLMER and S. ROUDENKO, A class of solutions to the 3d cubic nonlinear Schrödinger equation that blow-up on a circle, Appl. Math. Res. Express AMRX, (2011), 23-94. MR 2782553. (372)
-
(2011)
Appl. Math. Res. Express, AMRX
, pp. 23-94
-
-
Holmer, J.1
Roudenko, S.2
-
12
-
-
84878836612
-
Blow-up solutions on a sphere for the 3d quintic NLS in the energy space
-
MR 2994505. DOI 10.2140/apde.2012.5.475. (372)
-
J. HOLMER and S. ROUDENKO, Blow-up solutions on a sphere for the 3d quintic NLS in the energy space, Anal. PDE 5 (2012), 475-512. MR 2994505. DOI 10.2140/apde.2012.5.475. (372)
-
(2012)
Anal. PDE
, vol.5
, pp. 475-512
-
-
Holmer, J.1
Roudenko, S.2
-
13
-
-
80051646251
-
Nondispersive radial solutions to energy supercritical non-linear wave equations
-
MR 2823870. DOI 10.1353/ajm.2011.0029. (372)
-
C. E. KENIG and F. MERLE, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J.Math. 133 (2011), 1029-1065. MR 2823870. DOI 10.1353/ajm.2011.0029. (372)
-
(2011)
With applications, Amer. J.Math.
, vol.133
, pp. 1029-1065
-
-
Kenig, C.E.1
Merle, F.2
-
15
-
-
75949096038
-
Two-soliton solutions to the three-dimensional gravitational Hartree equation
-
MR 2560043. DOI 10.1002/cpa.20292. (375, 378, 379, 384)
-
J. KRIEGER, Y. MARTEL, and P. RAPHAËL, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math. 62 (2009), 1501-1550. MR 2560043. DOI 10.1002/cpa.20292. (375, 378, 379, 384)
-
(2009)
Comm. Pure Appl. Math.
, vol.62
, pp. 1501-1550
-
-
Krieger, J.1
Martel, Y.2
Raphaël, P.3
-
16
-
-
38349190717
-
Renormalization and blow up for charge one equivariant critical wave maps
-
MR 2372807. DOI 10.1007/s00222-007-0089-3. (374)
-
J. KRIEGER, W. SCHLAG, and D. TATARU, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), 543-615. MR 2372807. DOI 10.1007/s00222-007-0089-3. (374)
-
(2008)
Invent. Math.
, vol.171
, pp. 543-615
-
-
Krieger, J.1
Schlag, W.2
Tataru, D.3
-
17
-
-
34249974409
-
n
-
MR 0969899. DOI 10.1007/BF00251502. (371)
-
n, Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 0969899. DOI 10.1007/BF00251502. (371)
-
(1989)
Arch. Rational Mech. Anal.
, vol.105
, pp. 243-266
-
-
Kwong, M.K.1
-
18
-
-
27544509563
-
Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
-
MR 2170139. (379)
-
Y. MARTEL, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J.Math. 127 (2005), 1103-1140. MR 2170139. (379)
-
(2005)
Amer. J.Math.
, vol.127
, pp. 1103-1140
-
-
Martel, Y.1
-
21
-
-
0001337201
-
Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity
-
MR 1048692. (379)
-
F. MERLE, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), 223-240. MR 1048692. (379)
-
(1990)
Comm. Math. Phys.
, vol.129
, pp. 223-240
-
-
Merle, F.1
-
22
-
-
20444437961
-
Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
-
MR 2150386. DOI 10.4007/annals.2005.161.157. (371)
-
F. MERLE and P. RAPHAËL, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), 157-222. MR 2150386. DOI 10.4007/annals.2005.161.157. (371)
-
(2005)
Ann. Math.
, vol.161
, pp. 157-222
-
-
Merle, F.1
Raphaël, P.2
-
23
-
-
0041350485
-
Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation
-
MR 1995801. DOI 10.1007/s00039-003-0424-9. (372, 375, 378)
-
F. MERLE and P. RAPHAËL, Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. MR 1995801. DOI 10.1007/s00039-003-0424-9. (372, 375, 378)
-
(2003)
Geom. Funct. Anal.
, vol.13
, pp. 591-642
-
-
Merle, F.1
Raphaël, P.2
-
24
-
-
2942586742
-
2 critical nonlinear Schrödinger equation
-
MR 2061329. DOI 10.1007/s00222-003-0346-z. (422)
-
2 critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), 565-672. MR 2061329. DOI 10.1007/s00222-003-0346-z. (422)
-
(2004)
Invent. Math.
, vol.156
, pp. 565-672
-
-
Merle, F.1
Raphaël, P.2
-
25
-
-
30644464564
-
Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation
-
MR 2169042. DOI 10.1090/S0894-0347-05-00499-6. (372, 375)
-
F. MERLE and P. RAPHAËL, Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer.Math. Soc. 19 (2006), 37-90. MR 2169042. DOI 10.1090/S0894-0347-05-00499-6. (372, 375)
-
(2006)
J. Amer.Math. Soc.
, vol.19
, pp. 37-90
-
-
Merle, F.1
Raphaël, P.2
-
26
-
-
12444281836
-
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
-
MR 2116733. DOI 10.1007/s00220-004-1198-0. (371, 376)
-
F. MERLE and P. RAPHAËL, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), 675-704. MR 2116733. DOI 10.1007/s00220-004-1198-0. (371, 376)
-
(2005)
Comm. Math. Phys.
, vol.253
, pp. 675-704
-
-
Merle, F.1
Raphaël, P.2
-
27
-
-
50049127248
-
2 super critical nonlinear Schrödinger equations
-
MR 2427005. DOI 10.1353/ajm.0.0012. (371, 372, 374, 375, 380, 381)
-
2 super critical nonlinear Schrödinger equations, Amer. J.Math. 130 (2008), 945-978. MR 2427005. DOI 10.1353/ajm.0.0012. (371, 372, 374, 375, 380, 381)
-
(2008)
Amer. J.Math.
, vol.130
, pp. 945-978
-
-
Merle, F.1
Raphaël, P.2
-
29
-
-
77958472639
-
Stable self similar blow up dynamics for slightly L2 supercritical NLS equations
-
MR 2729284. DOI 10.1007/s00039-010-0081-8. (372, 375)
-
F. MERLE, P. RAPHAËL, and J. SZEFTEL, Stable self similar blow up dynamics for slightly L2 supercritical NLS equations, Geom. Funct. Anal. 20 (2010), 1028-1071. MR 2729284. DOI 10.1007/s00039-010-0081-8. (372, 375)
-
(2010)
Geom. Funct. Anal.
, vol.20
, pp. 1028-1071
-
-
Merle, F.1
Raphaël, P.2
Szeftel, J.3
-
31
-
-
84867445297
-
Invariant manifolds and dispersive Hamiltonian evolution equations
-
European Mathematical, Society (EMS), Zürich, MR 2847755. DOI 10.4171/095. (371)
-
K. NAKANISHI and W. SCHLAG, Invariant manifolds and dispersive Hamiltonian evolution equations, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2011. MR 2847755. DOI 10.4171/095. (371)
-
(2011)
Zurich Lectures in Advanced Mathematics.
-
-
Nakanishi, K.1
Schlag, W.2
-
32
-
-
0035537074
-
On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
-
MR 1852922. DOI 10.1007/PL00001048., (371)
-
G. PERELMAN, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605-673. MR 1852922. DOI 10.1007/PL00001048. (371)
-
(2001)
Ann. Henri Poincaré
, vol.2
, pp. 605-673
-
-
Perelman, G.1
-
33
-
-
84897642031
-
-
Université de Cergy Pontoise, dec (joint work with J. Holmer and S. Roudenko)., (376)
-
G. PERELMAN, Analysis seminar, Université de Cergy Pontoise, dec 2011 (joint work with J. Holmer and S. Roudenko). (376)
-
(2011)
Analysis seminar
-
-
Perelman, G.1
-
34
-
-
13844296411
-
Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation
-
MR 2122541. DOI 10.1007/s00208-004-0596-0
-
P. RAPHAËL, Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577-609. MR 2122541. DOI 10.1007/s00208-004-0596-0. ()
-
(2005)
Math. Ann.
, vol.331
, pp. 577-609
-
-
Raphaël, P.1
-
35
-
-
33748575882
-
2 supercritical nonlinear Schrödinger equation
-
MR 2248831. DOI 10.1215/S0012-7094-06-13421-X., (372, 375)
-
2 supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), 199-258. MR 2248831. DOI 10.1215/S0012-7094-06-13421-X. (372, 375)
-
(2006)
Duke Math. J.
, vol.134
, pp. 199-258
-
-
Raphaël, P.1
-
36
-
-
84855435413
-
Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems
-
MR 2929728. DOI 10.1007/s10240-011-0037-z., (379, 386, 403)
-
P. RAPHAËL and I. RODNIANSKI, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1-122. MR 2929728. DOI 10.1007/s10240-011-0037-z. (379, 386, 403)
-
(2012)
Publ. Math. Inst. Hautes Études Sci.
, vol.115
, pp. 1-122
-
-
Raphaël, P.1
Rodnianski, I.2
-
37
-
-
70350025320
-
Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation
-
MR 2525647. DOI 10.1007/s00220-009-0796-2., (372, 375)
-
P. RAPHAËL and J. SZEFTEL, Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation, Comm. Math. Phys. 290, 973-996, 2009. MR 2525647. DOI 10.1007/s00220-009-0796-2. (372, 375)
-
(2009)
Comm. Math. Phys.
, vol.290
, pp. 973-996
-
-
Raphaël, P.1
Szeftel, J.2
-
38
-
-
78651309844
-
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS
-
MR 2748399. DOI 10.1090/S0894-0347-2010-00688-1., (375, 376, 377, 378, 379, 380, 384, 387, 400, 403, 412)
-
P. RAPHAËL and J. SZEFTEL, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer.Math. Soc. 24 (2011), 471-546. MR 2748399. DOI 10.1090/S0894-0347-2010-00688-1. (375, 376, 377, 378, 379, 380, 384, 387, 400, 403, 412)
-
(2011)
J. Amer.Math. Soc.
, vol.24
, pp. 471-546
-
-
Raphaël, P.1
Szeftel, J.2
-
39
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
MR 0691044., (378, 386)
-
M. I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. MR 0691044. (378, 386)
-
(1983)
Comm. Math. Phys.
, vol.87
, pp. 567-576
-
-
Weinstein, M.I.1
-
40
-
-
84878693522
-
Standing ring blowup solutions for cubic nonlinear Schrödinger equations
-
MR 2501563., (372)
-
Y. ZWIERS, Standing ring blowup solutions for cubic nonlinear Schrödinger equations, Anal. PDE 4 (2011), 677-727. MR 2501563. (372)
-
(2011)
Anal. PDE
, vol.4
, pp. 677-727
-
-
Zwiers, Y.1
|