메뉴 건너뛰기




Volumn 163, Issue 2, 2014, Pages 369-431

On collapsing ring blow-up solutions to the mass supercritical nonlinear schrödinger equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84897627266     PISSN: 00127094     EISSN: None     Source Type: Journal    
DOI: 10.1215/00127094-2430477     Document Type: Article
Times cited : (50)

References (40)
  • 1
    • 78650453391 scopus 로고    scopus 로고
    • Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation
    • MR 2763335. DOI 10.1080/03605302.2010.513410. (380)
    • V. BANICA, R. CARLES, and T. DUYCKAERTS, Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation, Comm. Partial Differential Equations 36 (2011), 487-531. MR 2763335. DOI 10.1080/03605302.2010.513410. (380)
    • (2011) Comm. Partial Differential Equations , vol.36 , pp. 487-531
    • Banica, V.1    Carles, R.2    Duyckaerts, T.3
  • 2
    • 0000817006 scopus 로고
    • Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
    • MR 0646873. (371)
    • H. BERESTYCKI and T. CAZENAVE, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 489-492. MR 0646873. (371)
    • (1981) C. R. Acad. Sci. Paris Sér. I Math. , vol.293 , pp. 489-492
    • Berestycki, H.1    Cazenave, T.2
  • 3
    • 0000246714 scopus 로고    scopus 로고
    • Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
    • MR 1655515. (371, 380)
    • J. BOURGAIN and W. WANG, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197-215 (1998). MR 1655515. (371, 380)
    • (1997) Ann. Scuola Norm. Sup. Pisa Cl. Sci. , vol.25 , Issue.4 , pp. 197-215
    • Bourgain, J.1    Wang, W.2
  • 4
    • 5444256656 scopus 로고    scopus 로고
    • Semilinear Schrödinger Equations
    • New York Univ., Courant Inst. Math. Sci., New York, MR 2002047. (370, 372)
    • T. CAZENAVE, Semilinear Schrödinger Equations, Courant Lecture Notes in Math. 10, New York Univ., Courant Inst. Math. Sci., New York, 2003. MR 2002047. (370, 372)
    • (2003) Courant Lecture Notes in Math. , vol.10
    • Cazenave, T.1
  • 5
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • MR 0677997. (371)
    • T. CAZENAVE and P.-L. LIONS, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561. MR 0677997. (371)
    • (1982) Comm. Math. Phys. , vol.85 , pp. 549-561
    • Cazenave, T.1    Lions, P.-L.2
  • 6
    • 48249147411 scopus 로고    scopus 로고
    • Spectra of linearized operators for NLS solitary waves
    • MR 2368894. DOI 10.1137/050648389. (376, 386, 411)
    • S.-M. CHANG, S. GUSTAFSON, K. NAKANISHI, and T.-P. TSAI, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007), 1070-1111. MR 2368894. DOI 10.1137/050648389. (376, 386, 411)
    • (2007) SIAM J. Math. Anal. , vol.39 , pp. 1070-1111
    • Chang, S.-M.1    Gustafson, S.2    Nakanishi, K.3    Tsai, T.-P.4
  • 7
    • 0042154193 scopus 로고    scopus 로고
    • L3;1-solutions of Navier-Stokes equations and backward uniqueness
    • 3-44, no. 2, translation in Russian Math. Surveys. MR 1992563. DOI 10.1070/RM2003v058n02ABEH000609. (372)
    • L. ESCAURIAZA, G. A. SEREGIN, and V. SVVERAK, L3;1-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2(350), 3-44; translation in Russian Math. Surveys 58 (2003), no. 2, 211-250. MR 1992563. DOI 10.1070/RM2003v058n02ABEH000609. (372)
    • (2003) Uspekhi Mat. Nauk , vol.58 , Issue.350 , pp. 211-250
    • Escauriaza, L.1    Seregin, A.2    Svverak, V.3
  • 8
    • 34249993538 scopus 로고    scopus 로고
    • Singular ring solutions of critical and supercritical nonlinear Schrödinger equations
    • MR 2370365. DOI 10.1016/j.physd.2007.04.007. (373, 376, 377)
    • G. FIBICH, N. GAVISH, and X.-P. WANG, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Phys. D 231 (2007), 55-86. MR 2370365. DOI 10.1016/j.physd.2007.04.007. (373, 376, 377)
    • (2007) Phys. D , vol.231 , pp. 55-86
    • Fibich, G.1    Gavish, N.2    Wang, X.-P.3
  • 9
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • MR 0544879. (371)
    • B. GIDAS, W. M. NI, and L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 0544879. (371)
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 10
    • 49249148441 scopus 로고
    • On a class of nonlinear Schrödinger equations I: The Cauchy problem, general case
    • MR 0533218. DOI 10.1016/0022-1236(79)90076-4. (370)
    • J. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equations, I: The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-32. MR 0533218. DOI 10.1016/0022-1236(79)90076-4. (370)
    • (1979) J. Funct. Anal. , vol.32 , pp. 1-32
    • Ginibre, J.1    Velo, G.2
  • 11
    • 79952911434 scopus 로고    scopus 로고
    • A class of solutions to the 3d cubic nonlinear Schrödinger equation that blow-up on a circle
    • MR 2782553. (372)
    • J. HOLMER and S. ROUDENKO, A class of solutions to the 3d cubic nonlinear Schrödinger equation that blow-up on a circle, Appl. Math. Res. Express AMRX, (2011), 23-94. MR 2782553. (372)
    • (2011) Appl. Math. Res. Express, AMRX , pp. 23-94
    • Holmer, J.1    Roudenko, S.2
  • 12
    • 84878836612 scopus 로고    scopus 로고
    • Blow-up solutions on a sphere for the 3d quintic NLS in the energy space
    • MR 2994505. DOI 10.2140/apde.2012.5.475. (372)
    • J. HOLMER and S. ROUDENKO, Blow-up solutions on a sphere for the 3d quintic NLS in the energy space, Anal. PDE 5 (2012), 475-512. MR 2994505. DOI 10.2140/apde.2012.5.475. (372)
    • (2012) Anal. PDE , vol.5 , pp. 475-512
    • Holmer, J.1    Roudenko, S.2
  • 13
    • 80051646251 scopus 로고    scopus 로고
    • Nondispersive radial solutions to energy supercritical non-linear wave equations
    • MR 2823870. DOI 10.1353/ajm.2011.0029. (372)
    • C. E. KENIG and F. MERLE, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J.Math. 133 (2011), 1029-1065. MR 2823870. DOI 10.1353/ajm.2011.0029. (372)
    • (2011) With applications, Amer. J.Math. , vol.133 , pp. 1029-1065
    • Kenig, C.E.1    Merle, F.2
  • 15
    • 75949096038 scopus 로고    scopus 로고
    • Two-soliton solutions to the three-dimensional gravitational Hartree equation
    • MR 2560043. DOI 10.1002/cpa.20292. (375, 378, 379, 384)
    • J. KRIEGER, Y. MARTEL, and P. RAPHAËL, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math. 62 (2009), 1501-1550. MR 2560043. DOI 10.1002/cpa.20292. (375, 378, 379, 384)
    • (2009) Comm. Pure Appl. Math. , vol.62 , pp. 1501-1550
    • Krieger, J.1    Martel, Y.2    Raphaël, P.3
  • 16
    • 38349190717 scopus 로고    scopus 로고
    • Renormalization and blow up for charge one equivariant critical wave maps
    • MR 2372807. DOI 10.1007/s00222-007-0089-3. (374)
    • J. KRIEGER, W. SCHLAG, and D. TATARU, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), 543-615. MR 2372807. DOI 10.1007/s00222-007-0089-3. (374)
    • (2008) Invent. Math. , vol.171 , pp. 543-615
    • Krieger, J.1    Schlag, W.2    Tataru, D.3
  • 17
    • 34249974409 scopus 로고
    • n
    • MR 0969899. DOI 10.1007/BF00251502. (371)
    • n, Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 0969899. DOI 10.1007/BF00251502. (371)
    • (1989) Arch. Rational Mech. Anal. , vol.105 , pp. 243-266
    • Kwong, M.K.1
  • 18
    • 27544509563 scopus 로고    scopus 로고
    • Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
    • MR 2170139. (379)
    • Y. MARTEL, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J.Math. 127 (2005), 1103-1140. MR 2170139. (379)
    • (2005) Amer. J.Math. , vol.127 , pp. 1103-1140
    • Martel, Y.1
  • 21
    • 0001337201 scopus 로고
    • Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity
    • MR 1048692. (379)
    • F. MERLE, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), 223-240. MR 1048692. (379)
    • (1990) Comm. Math. Phys. , vol.129 , pp. 223-240
    • Merle, F.1
  • 22
    • 20444437961 scopus 로고    scopus 로고
    • Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • MR 2150386. DOI 10.4007/annals.2005.161.157. (371)
    • F. MERLE and P. RAPHAËL, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), 157-222. MR 2150386. DOI 10.4007/annals.2005.161.157. (371)
    • (2005) Ann. Math. , vol.161 , pp. 157-222
    • Merle, F.1    Raphaël, P.2
  • 23
    • 0041350485 scopus 로고    scopus 로고
    • Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • MR 1995801. DOI 10.1007/s00039-003-0424-9. (372, 375, 378)
    • F. MERLE and P. RAPHAËL, Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. MR 1995801. DOI 10.1007/s00039-003-0424-9. (372, 375, 378)
    • (2003) Geom. Funct. Anal. , vol.13 , pp. 591-642
    • Merle, F.1    Raphaël, P.2
  • 24
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • MR 2061329. DOI 10.1007/s00222-003-0346-z. (422)
    • 2 critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), 565-672. MR 2061329. DOI 10.1007/s00222-003-0346-z. (422)
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 25
    • 30644464564 scopus 로고    scopus 로고
    • Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation
    • MR 2169042. DOI 10.1090/S0894-0347-05-00499-6. (372, 375)
    • F. MERLE and P. RAPHAËL, Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer.Math. Soc. 19 (2006), 37-90. MR 2169042. DOI 10.1090/S0894-0347-05-00499-6. (372, 375)
    • (2006) J. Amer.Math. Soc. , vol.19 , pp. 37-90
    • Merle, F.1    Raphaël, P.2
  • 26
    • 12444281836 scopus 로고    scopus 로고
    • Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
    • MR 2116733. DOI 10.1007/s00220-004-1198-0. (371, 376)
    • F. MERLE and P. RAPHAËL, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), 675-704. MR 2116733. DOI 10.1007/s00220-004-1198-0. (371, 376)
    • (2005) Comm. Math. Phys. , vol.253 , pp. 675-704
    • Merle, F.1    Raphaël, P.2
  • 27
    • 50049127248 scopus 로고    scopus 로고
    • 2 super critical nonlinear Schrödinger equations
    • MR 2427005. DOI 10.1353/ajm.0.0012. (371, 372, 374, 375, 380, 381)
    • 2 super critical nonlinear Schrödinger equations, Amer. J.Math. 130 (2008), 945-978. MR 2427005. DOI 10.1353/ajm.0.0012. (371, 372, 374, 375, 380, 381)
    • (2008) Amer. J.Math. , vol.130 , pp. 945-978
    • Merle, F.1    Raphaël, P.2
  • 29
    • 77958472639 scopus 로고    scopus 로고
    • Stable self similar blow up dynamics for slightly L2 supercritical NLS equations
    • MR 2729284. DOI 10.1007/s00039-010-0081-8. (372, 375)
    • F. MERLE, P. RAPHAËL, and J. SZEFTEL, Stable self similar blow up dynamics for slightly L2 supercritical NLS equations, Geom. Funct. Anal. 20 (2010), 1028-1071. MR 2729284. DOI 10.1007/s00039-010-0081-8. (372, 375)
    • (2010) Geom. Funct. Anal. , vol.20 , pp. 1028-1071
    • Merle, F.1    Raphaël, P.2    Szeftel, J.3
  • 31
    • 84867445297 scopus 로고    scopus 로고
    • Invariant manifolds and dispersive Hamiltonian evolution equations
    • European Mathematical, Society (EMS), Zürich, MR 2847755. DOI 10.4171/095. (371)
    • K. NAKANISHI and W. SCHLAG, Invariant manifolds and dispersive Hamiltonian evolution equations, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2011. MR 2847755. DOI 10.4171/095. (371)
    • (2011) Zurich Lectures in Advanced Mathematics.
    • Nakanishi, K.1    Schlag, W.2
  • 32
    • 0035537074 scopus 로고    scopus 로고
    • On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
    • MR 1852922. DOI 10.1007/PL00001048., (371)
    • G. PERELMAN, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605-673. MR 1852922. DOI 10.1007/PL00001048. (371)
    • (2001) Ann. Henri Poincaré , vol.2 , pp. 605-673
    • Perelman, G.1
  • 33
    • 84897642031 scopus 로고    scopus 로고
    • Université de Cergy Pontoise, dec (joint work with J. Holmer and S. Roudenko)., (376)
    • G. PERELMAN, Analysis seminar, Université de Cergy Pontoise, dec 2011 (joint work with J. Holmer and S. Roudenko). (376)
    • (2011) Analysis seminar
    • Perelman, G.1
  • 34
    • 13844296411 scopus 로고    scopus 로고
    • Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation
    • MR 2122541. DOI 10.1007/s00208-004-0596-0
    • P. RAPHAËL, Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577-609. MR 2122541. DOI 10.1007/s00208-004-0596-0. ()
    • (2005) Math. Ann. , vol.331 , pp. 577-609
    • Raphaël, P.1
  • 35
    • 33748575882 scopus 로고    scopus 로고
    • 2 supercritical nonlinear Schrödinger equation
    • MR 2248831. DOI 10.1215/S0012-7094-06-13421-X., (372, 375)
    • 2 supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), 199-258. MR 2248831. DOI 10.1215/S0012-7094-06-13421-X. (372, 375)
    • (2006) Duke Math. J. , vol.134 , pp. 199-258
    • Raphaël, P.1
  • 36
    • 84855435413 scopus 로고    scopus 로고
    • Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems
    • MR 2929728. DOI 10.1007/s10240-011-0037-z., (379, 386, 403)
    • P. RAPHAËL and I. RODNIANSKI, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1-122. MR 2929728. DOI 10.1007/s10240-011-0037-z. (379, 386, 403)
    • (2012) Publ. Math. Inst. Hautes Études Sci. , vol.115 , pp. 1-122
    • Raphaël, P.1    Rodnianski, I.2
  • 37
    • 70350025320 scopus 로고    scopus 로고
    • Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation
    • MR 2525647. DOI 10.1007/s00220-009-0796-2., (372, 375)
    • P. RAPHAËL and J. SZEFTEL, Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation, Comm. Math. Phys. 290, 973-996, 2009. MR 2525647. DOI 10.1007/s00220-009-0796-2. (372, 375)
    • (2009) Comm. Math. Phys. , vol.290 , pp. 973-996
    • Raphaël, P.1    Szeftel, J.2
  • 38
    • 78651309844 scopus 로고    scopus 로고
    • Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS
    • MR 2748399. DOI 10.1090/S0894-0347-2010-00688-1., (375, 376, 377, 378, 379, 380, 384, 387, 400, 403, 412)
    • P. RAPHAËL and J. SZEFTEL, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer.Math. Soc. 24 (2011), 471-546. MR 2748399. DOI 10.1090/S0894-0347-2010-00688-1. (375, 376, 377, 378, 379, 380, 384, 387, 400, 403, 412)
    • (2011) J. Amer.Math. Soc. , vol.24 , pp. 471-546
    • Raphaël, P.1    Szeftel, J.2
  • 39
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • MR 0691044., (378, 386)
    • M. I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. MR 0691044. (378, 386)
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1
  • 40
    • 84878693522 scopus 로고    scopus 로고
    • Standing ring blowup solutions for cubic nonlinear Schrödinger equations
    • MR 2501563., (372)
    • Y. ZWIERS, Standing ring blowup solutions for cubic nonlinear Schrödinger equations, Anal. PDE 4 (2011), 677-727. MR 2501563. (372)
    • (2011) Anal. PDE , vol.4 , pp. 677-727
    • Zwiers, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.