-
1
-
-
10844227674
-
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University
-
New York; American Mathematical Society, Providence, RI
-
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003).
-
(2003)
Courant Institute of Mathematical Sciences
-
-
Cazenave, T.1
-
2
-
-
48249147411
-
Spectra of linearized operators for NLS solitary waves
-
1070-1111
-
S. M. Chang, S. Gustafson, K. Nakanishi, T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39: 4 (2007/08), 1070-1111.
-
(2007)
SIAM J. Math. Anal.
, vol.39
-
-
Chang, S.M.1
Gustafson, S.2
Nakanishi, K.3
Tsai, T.-P.4
-
3
-
-
34249993538
-
Singular ring solutions of critical and supercritical nonlinear Schrödinger equations
-
Fibich G., Gavish N., Wang X. P. (2007) Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Phys. D: Nonlinear Phenomena 231(1): 55-86.
-
(2007)
Phys. D: Nonlinear Phenomena
, vol.231
, Issue.1
, pp. 55-86
-
-
Fibich, G.1
Gavish, N.2
Wang, X.P.3
-
4
-
-
33746745308
-
2 critical nonlinear Schrödinger equation
-
2 critical nonlinear Schrödinger equation. Phys. D 220(1): 1-13.
-
(2006)
Phys. D
, vol.220
, Issue.1
, pp. 1-13
-
-
Fibich, G.1
Merle, F.2
Raphael, P.3
-
5
-
-
0342647291
-
Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
-
Fibich G., Papanicolaou G. (2000) Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60(1): 183-240.
-
(2000)
SIAM J. Appl. Math.
, vol.60
, Issue.1
, pp. 183-240
-
-
Fibich, G.1
Papanicolaou, G.2
-
6
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
Gidas B., Ni W. M., Nirenberg L. (1979) Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68: 209-243.
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
7
-
-
49249148441
-
On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case
-
Ginibre J., Velo G. (1979) On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1): 1-32.
-
(1979)
J. Funct. Anal.
, vol.32
, Issue.1
, pp. 1-32
-
-
Ginibre, J.1
Velo, G.2
-
8
-
-
84990617895
-
Commutator estimates and the Euler and Navier-Stokes equations
-
Kato T., Ponce G. (1988) Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(7): 891-907.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, Issue.7
, pp. 891-907
-
-
Kato, T.1
Ponce, G.2
-
9
-
-
0029394002
-
Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis
-
Kopell N., Landman M. (1995) Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis. SIAM J. Appl. Math. 55(5): 1297-1323.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, Issue.5
, pp. 1297-1323
-
-
Kopell, N.1
Landman, M.2
-
12
-
-
20444437961
-
Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
-
Merle F., Raphaël P. (2005) Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. Ann. Math. 161(1): 157-222.
-
(2005)
Ann. Math.
, vol.161
, Issue.1
, pp. 157-222
-
-
Merle, F.1
Raphaël, P.2
-
13
-
-
0041350485
-
Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation
-
Merle F., Raphaël P. (2003) Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13: 591-642.
-
(2003)
Geom. Funct. Anal.
, vol.13
, pp. 591-642
-
-
Merle, F.1
Raphaël, P.2
-
14
-
-
2942586742
-
2 critical nonlinear Schrödinger equation
-
2 critical nonlinear Schrödinger equation. Invent. Math. 156: 565-672.
-
(2004)
Invent. Math.
, vol.156
, pp. 565-672
-
-
Merle, F.1
Raphaël, P.2
-
15
-
-
30644464564
-
Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation
-
Merle F., Raphaël P. (2006) Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19(1): 37-90.
-
(2006)
J. Amer. Math. Soc.
, vol.19
, Issue.1
, pp. 37-90
-
-
Merle, F.1
Raphaël, P.2
-
16
-
-
12444281836
-
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
-
Merle F., Raphaël P. (2005) Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys. 253(3): 675-704.
-
(2005)
Comm. Math. Phys.
, vol.253
, Issue.3
, pp. 675-704
-
-
Merle, F.1
Raphaël, P.2
-
17
-
-
50049127248
-
2 super critical nonlinear Schrödinger equations
-
2 super critical nonlinear Schrödinger equations. Amer. J. Math. 130(4): 945-978.
-
(2008)
Amer. J. Math.
, vol.130
, Issue.4
, pp. 945-978
-
-
Merle, F.1
Raphaël, P.2
-
18
-
-
0035537074
-
On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
-
Perelman G. (2001) On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D. Ann. Henri Poincare 2: 605-673.
-
(2001)
Ann. Henri Poincare
, vol.2
, pp. 605-673
-
-
Perelman, G.1
-
19
-
-
13844296411
-
Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation
-
Raphaël P. (2005) Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation. Math. Ann. 331: 577-609.
-
(2005)
Math. Ann.
, vol.331
, pp. 577-609
-
-
Raphaël, P.1
-
20
-
-
33748575882
-
2 supercritical nonlinear Schrödinger equation
-
2 supercritical nonlinear Schrödinger equation. Duke Math. J. 134(2): 199-258.
-
(2006)
Duke Math. J.
, vol.134
, Issue.2
, pp. 199-258
-
-
Raphaël, P.1
-
22
-
-
77958475075
-
Standing ring blow up solutions to the quintic NLS in dimension N
-
to appear
-
P. Raphaël, J. Szeftel, Standing ring blow up solutions to the quintic NLS in dimension N, Comm. Math. Phys., to appear.
-
Comm. Math. Phys.
-
-
Raphaël, P.1
Szeftel, J.2
-
23
-
-
77958464071
-
On the singularity formation for the critical O(3) σ model
-
to appea
-
I. Rodnianski, J. Sterbenz, On the singularity formation for the critical O(3) σ model, Annals of Math., to appear.
-
Annals of Math.
-
-
Rodnianski, I.1
Sterbenz, J.2
-
24
-
-
0003230098
-
The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse
-
Springer-Verlag, New York
-
C. Sulem, P. L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139, Springer-Verlag, New York (1999).
-
(1999)
Applied Mathematical Sciences
, pp. 139
-
-
Sulem, C.1
Sulem, P.L.2
-
25
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
Weinstein M. I. (1985) Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16: 472-491.
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 472-491
-
-
Weinstein, M.I.1
-
26
-
-
0002557939
-
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
-
Zakharov V. E., Shabat A. B. (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP 34: 62-69.
-
(1972)
Sov. Phys. JETP
, vol.34
, pp. 62-69
-
-
Zakharov, V.E.1
Shabat, A.B.2
|