메뉴 건너뛰기




Volumn 20, Issue 4, 2010, Pages 1028-1071

Stable Self-Similar Blow-Up Dynamics for Slightly L2 Super-Critical Nls Equations

Author keywords

blow up; Nonlinear Schrodinger equation; supercritical

Indexed keywords


EID: 77958472639     PISSN: 1016443X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00039-010-0081-8     Document Type: Article
Times cited : (46)

References (26)
  • 1
    • 10844227674 scopus 로고    scopus 로고
    • Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University
    • New York; American Mathematical Society, Providence, RI
    • T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003).
    • (2003) Courant Institute of Mathematical Sciences
    • Cazenave, T.1
  • 3
    • 34249993538 scopus 로고    scopus 로고
    • Singular ring solutions of critical and supercritical nonlinear Schrödinger equations
    • Fibich G., Gavish N., Wang X. P. (2007) Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Phys. D: Nonlinear Phenomena 231(1): 55-86.
    • (2007) Phys. D: Nonlinear Phenomena , vol.231 , Issue.1 , pp. 55-86
    • Fibich, G.1    Gavish, N.2    Wang, X.P.3
  • 4
    • 33746745308 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 2 critical nonlinear Schrödinger equation. Phys. D 220(1): 1-13.
    • (2006) Phys. D , vol.220 , Issue.1 , pp. 1-13
    • Fibich, G.1    Merle, F.2    Raphael, P.3
  • 5
    • 0342647291 scopus 로고    scopus 로고
    • Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
    • Fibich G., Papanicolaou G. (2000) Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60(1): 183-240.
    • (2000) SIAM J. Appl. Math. , vol.60 , Issue.1 , pp. 183-240
    • Fibich, G.1    Papanicolaou, G.2
  • 6
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • Gidas B., Ni W. M., Nirenberg L. (1979) Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68: 209-243.
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 7
    • 49249148441 scopus 로고
    • On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case
    • Ginibre J., Velo G. (1979) On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1): 1-32.
    • (1979) J. Funct. Anal. , vol.32 , Issue.1 , pp. 1-32
    • Ginibre, J.1    Velo, G.2
  • 8
    • 84990617895 scopus 로고
    • Commutator estimates and the Euler and Navier-Stokes equations
    • Kato T., Ponce G. (1988) Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(7): 891-907.
    • (1988) Comm. Pure Appl. Math. , vol.41 , Issue.7 , pp. 891-907
    • Kato, T.1    Ponce, G.2
  • 9
    • 0029394002 scopus 로고
    • Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis
    • Kopell N., Landman M. (1995) Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis. SIAM J. Appl. Math. 55(5): 1297-1323.
    • (1995) SIAM J. Appl. Math. , vol.55 , Issue.5 , pp. 1297-1323
    • Kopell, N.1    Landman, M.2
  • 12
    • 20444437961 scopus 로고    scopus 로고
    • Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., Raphaël P. (2005) Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. Ann. Math. 161(1): 157-222.
    • (2005) Ann. Math. , vol.161 , Issue.1 , pp. 157-222
    • Merle, F.1    Raphaël, P.2
  • 13
    • 0041350485 scopus 로고    scopus 로고
    • Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., Raphaël P. (2003) Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13: 591-642.
    • (2003) Geom. Funct. Anal. , vol.13 , pp. 591-642
    • Merle, F.1    Raphaël, P.2
  • 14
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 2 critical nonlinear Schrödinger equation. Invent. Math. 156: 565-672.
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 15
    • 30644464564 scopus 로고    scopus 로고
    • Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., Raphaël P. (2006) Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19(1): 37-90.
    • (2006) J. Amer. Math. Soc. , vol.19 , Issue.1 , pp. 37-90
    • Merle, F.1    Raphaël, P.2
  • 16
    • 12444281836 scopus 로고    scopus 로고
    • Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
    • Merle F., Raphaël P. (2005) Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys. 253(3): 675-704.
    • (2005) Comm. Math. Phys. , vol.253 , Issue.3 , pp. 675-704
    • Merle, F.1    Raphaël, P.2
  • 17
    • 50049127248 scopus 로고    scopus 로고
    • 2 super critical nonlinear Schrödinger equations
    • 2 super critical nonlinear Schrödinger equations. Amer. J. Math. 130(4): 945-978.
    • (2008) Amer. J. Math. , vol.130 , Issue.4 , pp. 945-978
    • Merle, F.1    Raphaël, P.2
  • 18
    • 0035537074 scopus 로고    scopus 로고
    • On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
    • Perelman G. (2001) On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D. Ann. Henri Poincare 2: 605-673.
    • (2001) Ann. Henri Poincare , vol.2 , pp. 605-673
    • Perelman, G.1
  • 19
    • 13844296411 scopus 로고    scopus 로고
    • Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation
    • Raphaël P. (2005) Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation. Math. Ann. 331: 577-609.
    • (2005) Math. Ann. , vol.331 , pp. 577-609
    • Raphaël, P.1
  • 20
    • 33748575882 scopus 로고    scopus 로고
    • 2 supercritical nonlinear Schrödinger equation
    • 2 supercritical nonlinear Schrödinger equation. Duke Math. J. 134(2): 199-258.
    • (2006) Duke Math. J. , vol.134 , Issue.2 , pp. 199-258
    • Raphaël, P.1
  • 22
    • 77958475075 scopus 로고    scopus 로고
    • Standing ring blow up solutions to the quintic NLS in dimension N
    • to appear
    • P. Raphaël, J. Szeftel, Standing ring blow up solutions to the quintic NLS in dimension N, Comm. Math. Phys., to appear.
    • Comm. Math. Phys.
    • Raphaël, P.1    Szeftel, J.2
  • 23
    • 77958464071 scopus 로고    scopus 로고
    • On the singularity formation for the critical O(3) σ model
    • to appea
    • I. Rodnianski, J. Sterbenz, On the singularity formation for the critical O(3) σ model, Annals of Math., to appear.
    • Annals of Math.
    • Rodnianski, I.1    Sterbenz, J.2
  • 24
    • 0003230098 scopus 로고    scopus 로고
    • The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse
    • Springer-Verlag, New York
    • C. Sulem, P. L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139, Springer-Verlag, New York (1999).
    • (1999) Applied Mathematical Sciences , pp. 139
    • Sulem, C.1    Sulem, P.L.2
  • 25
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein M. I. (1985) Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16: 472-491.
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 26
    • 0002557939 scopus 로고
    • Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
    • Zakharov V. E., Shabat A. B. (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP 34: 62-69.
    • (1972) Sov. Phys. JETP , vol.34 , pp. 62-69
    • Zakharov, V.E.1    Shabat, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.