-
1
-
-
78650453391
-
Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation
-
Banica V., Carles R., Duyckaerts T.: Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation. Commun. Partial Differ. Equ. 36(3), 487-531 (2011).
-
(2011)
Commun. Partial Differ. Equ.
, vol.36
, Issue.3
, pp. 487-531
-
-
Banica, V.1
Carles, R.2
Duyckaerts, T.3
-
2
-
-
0000246714
-
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
-
(1-2), 197-215 (1998) (Dedicated to Ennio De Giorgi)
-
Bourgain, J., Wang, W.: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25(1997)(1-2), 197-215 (1998) (Dedicated to Ennio De Giorgi).
-
(1997)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.25
, Issue.4
-
-
Bourgain, J.1
Wang, W.2
-
3
-
-
0038238334
-
Two singular dynamics of the nonlinear Schrödinger equation on a plane domain
-
Burq N., Gérard P., Tzvetkov N.: Two singular dynamics of the nonlinear Schrödinger equation on a plane domain. Geom. Funct. Anal. 13(1), 1-19 (2003).
-
(2003)
Geom. Funct. Anal.
, vol.13
, Issue.1
, pp. 1-19
-
-
Burq, N.1
Gérard, P.2
Tzvetkov, N.3
-
4
-
-
0035873577
-
Dispersive wave turbulence in one dimension
-
Advances in nonlinear mathematics and science
-
Cai, D., Majda, A. J., McLaughlin, D. W., Tabak, E. G.: Dispersive wave turbulence in one dimension. Phys. D152/153, 551-572 (2001) Advances in nonlinear mathematics and science.
-
(2001)
Phys.
, vol.D152
, Issue.153
, pp. 551-572
-
-
Cai, D.1
Majda, A.J.2
McLaughlin, D.W.3
Tabak, E.G.4
-
5
-
-
0001594183
-
Commutators of singular integral operators
-
Calderón A.-P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U. S. A. 53, 1092-1099 (1965).
-
(1965)
Proc. Nat. Acad. Sci. U.S.A.
, vol.53
, pp. 1092-1099
-
-
Calderón, A.-P.1
-
6
-
-
5444256656
-
Semilinear Schrödinger equations
-
New York University Courant Institute of Mathematical
-
Cazenave, T.: Semilinear Schrödinger equations. Courant Lecutre Nores in Mathematics10 (2003), New York University Courant Institute of Mathematical.
-
(2003)
Courant Lecutre Nores in Mathematics
, vol.10
-
-
Cazenave, T.1
-
8
-
-
63949086654
-
Dynamic of threshold solutions for energy-critical NLS
-
Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787-1840 (2009).
-
(2009)
Geom. Funct. Anal.
, vol.18
, Issue.6
, pp. 1787-1840
-
-
Duyckaerts, T.1
Merle, F.2
-
9
-
-
33847732573
-
Mean field dynamics of boson stars
-
Elgart A., Schlein B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500-545 (2007).
-
(2007)
Commun. Pure Appl. Math.
, vol.60
, Issue.4
, pp. 500-545
-
-
Elgart, A.1
Schlein, B.2
-
12
-
-
34249294052
-
Effective dynamics for boson stars
-
Fröhlich, J., Jonsson, B. L. G., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity20(5), 1031-1075 (2007).
-
(2007)
Nonlinearity
, vol.20
, Issue.5
, pp. 1031-1075
-
-
Fröhlich, J.1
Jonsson, B.L.G.2
Lenzmann, E.3
-
14
-
-
34547549403
-
Blowup for nonlinear wave equations describing boson stars
-
Fröhlich J., Lenzmann E.: Blowup for nonlinear wave equations describing boson stars. Commun. Pure Appl. Math. 60(11), 1691-1705 (2007).
-
(2007)
Commun. Pure Appl. Math.
, vol.60
, Issue.11
, pp. 1691-1705
-
-
Fröhlich, J.1
Lenzmann, E.2
-
15
-
-
84856901320
-
The cubic Szego{double acute} equation
-
Gérard, P., Grellier, S.: The cubic Szego{double acute} equation. Ann. Sci. éc. Norm. Supér. (4)43(5), 761-810 (2010).
-
(2010)
Ann. Sci. éc. Norm. Supér
, vol.43
, Issue.4-5
, pp. 761-810
-
-
Gérard, P.1
Grellier, S.2
-
16
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
Gidas B., Ni W. M., Nirenberg L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209-243 (1979).
-
(1979)
Commun. Math. Phys.
, vol.68
, Issue.3
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
17
-
-
0001751564
-
Non-stationary flows of an ideal incompressible fluid
-
Judovič, V. I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032-1066 (1963).
-
(1963)
Ž. Vyčisl. Mat. i Mat. Fiz.
, vol.3
, pp. 1032-1066
-
-
Judovič, V.I.1
-
18
-
-
33750526878
-
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
-
Kenig C. E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645-675 (2006).
-
(2006)
Invent. Math.
, vol.166
, Issue.3
, pp. 645-675
-
-
Kenig, C.E.1
Merle, F.2
-
19
-
-
74549167807
-
The cubic nonlinear Schrödinger equation in two dimensions with radial data
-
Killip R., Tao T., Visan M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. (JEMS) 11(6), 1203-1258 (2009).
-
(2009)
J. Eur. Math. Soc. (JEMS)
, vol.11
, Issue.6
, pp. 1203-1258
-
-
Killip, R.1
Tao, T.2
Visan, M.3
-
20
-
-
68349155323
-
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher
-
Killip, R., Visan, M., Zhang, X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE 1(2), 229-266 (2008).
-
(2008)
Anal. PDE
, vol.1
, Issue.2
, pp. 229-266
-
-
Killip, R.1
Visan, M.2
Zhang, X.3
-
21
-
-
84872681857
-
On the continuum limit for discrete NLS with long-range interactions
-
Kirkpatrick K., Lenzmann E., Staffilani G.: On the continuum limit for discrete NLS with long-range interactions. Commun. Math. Phys. 317(3), 563-591 (2013).
-
(2013)
Commun. Math. Phys.
, vol.317
, Issue.3
, pp. 563-591
-
-
Kirkpatrick, K.1
Lenzmann, E.2
Staffilani, G.3
-
22
-
-
70350005122
-
Non-generic blow-up solutions for the critical focusing NLS in 1-D
-
Krieger J., Schlag W.: Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. (JEMS) 11(1), 1-125 (2009).
-
(2009)
J. Eur. Math. Soc. (JEMS)
, vol.11
, Issue.1
, pp. 1-125
-
-
Krieger, J.1
Schlag, W.2
-
23
-
-
75949096038
-
Two-soliton solutions to the three-dimensional gravitational Hartree equation
-
Krieger J., Martel Y., Raphaël P.: Two-soliton solutions to the three-dimensional gravitational Hartree equation. Commun. Pure Appl. Math. 62(11), 1501-1550 (2009).
-
(2009)
Commun. Pure Appl. Math.
, vol.62
, Issue.11
, pp. 1501-1550
-
-
Krieger, J.1
Martel, Y.2
Raphaël, P.3
-
25
-
-
0004511516
-
A one-dimensional model for dispersive wave turbulence
-
Majda A. J., McLaughlin D. W., Tabak E. G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7(1), 9-44 (1997).
-
(1997)
J. Nonlinear Sci.
, vol.7
, Issue.1
, pp. 9-44
-
-
Majda, A.J.1
McLaughlin, D.W.2
Tabak, E.G.3
-
26
-
-
27544509563
-
Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
-
Martel Y.: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103-1140 (2005).
-
(2005)
Am. J. Math.
, vol.127
, Issue.5
, pp. 1103-1140
-
-
Martel, Y.1
-
27
-
-
0036872989
-
2-mass for the critical gKdV equation
-
2-mass for the critical gKdV equation. Duke Math. J. 115(2), 385-408 (2002).
-
(2002)
Duke Math. J.
, vol.115
, Issue.2
, pp. 385-408
-
-
Martel, Y.1
Merle, F.2
-
28
-
-
33750213593
-
Multi solitary waves for nonlinear Schrödinger equations
-
Martel, Y., Merle, F.: Multi solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire23(6), 849-864 (2006).
-
(2006)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.23
, Issue.6
, pp. 849-864
-
-
Martel, Y.1
Merle, F.2
-
29
-
-
84974001368
-
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
-
Merle F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math J. 69(2), 427-454 (1993).
-
(1993)
Duke Math J.
, vol.69
, Issue.2
, pp. 427-454
-
-
Merle, F.1
-
30
-
-
0041350485
-
Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation
-
Merle F., Raphael P.: Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13(3), 591-642 (2003).
-
(2003)
Geom. Funct. Anal.
, vol.13
, Issue.3
, pp. 591-642
-
-
Merle, F.1
Raphael, P.2
-
32
-
-
0001337201
-
Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity
-
Merle, F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223-240 (1990).
-
(1990)
Commun. Math. Phys.
, vol.129
, Issue.2
, pp. 223-240
-
-
Merle, F.1
-
33
-
-
84877829362
-
-
(preprint, 2012)
-
Merle, F., Martel, Y., Raphaël, P.: Blow up for the critical gKdV I: dynamics near the soliton (preprint, 2012).
-
Blow up for the critical gKdV I: Dynamics near the soliton
-
-
Merle, F.1
Martel, Y.2
Raphaël, P.3
-
34
-
-
84877804332
-
-
(preprint, 2012)
-
Merle, F., Martel, Y., Raphaël, P.: Blow up for the critical gKdV II: the minimal mass solution (preprint, 2012).
-
Blow up for the critical gKdV II: The minimal mass solution
-
-
Merle, F.1
Martel, Y.2
Raphaël, P.3
-
35
-
-
20444437961
-
The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation
-
Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2)161(1), 157-222 (2005).
-
(2005)
Ann. Math.
, vol.161
, Issue.1-2
, pp. 157-222
-
-
Merle, F.1
Raphael, P.2
-
36
-
-
30644464564
-
2 critical nonlinear Schrödinger equation
-
(electronic)
-
2 critical nonlinear Schrödinger equation. J. Am. Math. Soc. 19(1), 37-90 (electronic) (2006).
-
(2006)
J. Am. Math. Soc.
, vol.19
, Issue.1
, pp. 37-90
-
-
Merle, F.1
Raphael, P.2
-
38
-
-
38249018883
-
A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations
-
Ogawa T.: A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14(9), 765-769 (1990).
-
(1990)
Nonlinear Anal.
, vol.14
, Issue.9
, pp. 765-769
-
-
Ogawa, T.1
-
39
-
-
84859584514
-
Explicit formula for the solution of the Szegö equation on the real line and applications
-
Pocovnicu O.: Explicit formula for the solution of the Szegö equation on the real line and applications. Discret. Contin. Dyn. Syst. 31(3), 607-649 (2011).
-
(2011)
Discret. Contin. Dyn. Syst.
, vol.31
, Issue.3
, pp. 607-649
-
-
Pocovnicu, O.1
-
40
-
-
78651309844
-
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS
-
Raphaël P., Szeftel J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24(2), 471-546 (2011).
-
(2011)
J. Am. Math. Soc.
, vol.24
, Issue.2
, pp. 471-546
-
-
Raphaël, P.1
Szeftel, J.2
-
41
-
-
0003552286
-
-
Princeton Mathematical Series, Princeton University Press, Princeton (with the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III)
-
Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton (with the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) (1993).
-
(1993)
Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals
, vol.43
-
-
Stein, E.M.1
-
42
-
-
67650048440
-
An introduction to Sobolev spaces and interpolation spaces
-
Springer, Berlin
-
Tartar, L.: An introduction to Sobolev spaces and interpolation spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007).
-
(2007)
Lecture Notes of the Unione Matematica Italiana
, vol.3
-
-
Tartar, L.1
-
43
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567-576 (1982/83).
-
(1982)
Commun. Math. Phys.
, vol.87
, Issue.4
, pp. 567-576
-
-
Weinstein, M.I.1
-
44
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
Weinstein M. I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472-491 (1985).
-
(1985)
SIAM J. Math. Anal.
, vol.16
, Issue.3
, pp. 472-491
-
-
Weinstein, M.I.1
|