메뉴 건너뛰기




Volumn 62, Issue 11, 2009, Pages 1501-1550

Two-soliton solutions to the three-dimensional gravitational Hartree equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 75949096038     PISSN: 00103640     EISSN: 00103640     Source Type: Journal    
DOI: 10.1002/cpa.20292     Document Type: Article
Times cited : (62)

References (31)
  • 2
    • 0000246714 scopus 로고    scopus 로고
    • Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
    • Bourgain, J.; Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197-215 (1998).
    • (1997) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.25 , Issue.1-2 , pp. 197-215
    • Bourgain, J.1    Wang, W.2
  • 3
    • 0002779183 scopus 로고
    • On the stability of solitary waves for nonlinear Schrödinger equations
    • American Mathematical Society Translations, Series 2, American Mathematical Society, Providence, R.I.
    • Buslaev, V. S.; Perel'man, G. S. On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations, 75-98. American Mathematical Society Translations, Series 2, 164. American Mathematical Society, Providence, R.I., 1995.
    • (1995) Nonlinear evolution equations , vol.164 , pp. 75-98
    • Buslaev, V.S.1    Perel'man, G.S.2
  • 4
    • 10844227674 scopus 로고    scopus 로고
    • Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, R.I
    • Cazenave, T. Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, R.I., 2003.
    • (2003) Semilinear Schrödinger equations , vol.10
    • Cazenave, T.1
  • 5
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • Cazenave, T.; Lions, P.-L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982), no. 4, 549-561.
    • (1982) Comm. Math. Phys. , vol.85 , Issue.4 , pp. 549-561
    • Cazenave, T.1    Lions, P.-L.2
  • 6
    • 33749315576 scopus 로고    scopus 로고
    • Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior
    • Côte, R. Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior. J. Funct. Anal. 241 (2006), no. 1, 143-211.
    • (2006) J. Funct. Anal. , vol.241 , Issue.1 , pp. 143-211
    • Côte, R.1
  • 7
    • 33847732573 scopus 로고    scopus 로고
    • Mean field dynamics of boson stars
    • Elgart, A.; Schlein, B. Mean field dynamics of boson stars. Comm. Pure Appl. Math. 60 (2007), no. 4, 500-545.
    • (2007) Comm. Pure Appl. Math. , vol.60 , Issue.4 , pp. 500-545
    • Elgart, A.1    Schlein, B.2
  • 8
    • 79551496714 scopus 로고    scopus 로고
    • Derivation of the nonlinear Schrödinger equation from a many body Coulomb system
    • Erdös, L.; Yau, H.-T. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5 (2001), no. 6, 1169-1205.
    • (2001) Adv. Theor. Math. Phys. , vol.5 , Issue.6 , pp. 1169-1205
    • Erdös, L.1    Yau, H.-T.2
  • 9
    • 0036101479 scopus 로고    scopus 로고
    • On the point-particle (Newtonian) limit of the non-linear Hartree equation
    • Fröhlich, J.; Tsai, T-P.; Yau, H-T. On the point-particle (Newtonian) limit of the non-linear Hartree equation. Comm. Math. Phys. 225 (2002), no. 2, 223-274.
    • (2002) Comm. Math. Phys. , vol.225 , Issue.2 , pp. 223-274
    • Fröhlich, J.1    Tsai, T.-P.2    Yau, H.-T.3
  • 10
    • 34948859449 scopus 로고    scopus 로고
    • Relaxation of solitons in nonlinear Schrödinger equations with potential
    • Gang, Z.; Sigal, I. M. Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv. Math. 216 (2007), no. 2, 443-490.
    • (2007) Adv. Math. , vol.216 , Issue.2 , pp. 443-490
    • Gang, Z.1    Sigal, I.M.2
  • 11
    • 0001632973 scopus 로고
    • Long range scattering for nonlinear Schrödinger equations and Hartree equations in space dimension n ≥ 2
    • Ginibre, J.; Ozawa, T. Long range scattering for nonlinear Schrödinger equations and Hartree equations in space dimension n ≥ 2. Comm. Math. Phys. 151 (1993), no. 3, 619-645.
    • (1993) Comm. Math. Phys. , vol.151 , Issue.3 , pp. 619-645
    • Ginibre, J.1    Ozawa, T.2
  • 12
    • 0000326517 scopus 로고    scopus 로고
    • On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations
    • Hayashi, N.; Kato, K.; Naumkin, P. I. On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), no. 3-4, 483-497.
    • (1998) Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) , vol.27 , Issue.3-4 , pp. 483-497
    • Hayashi, N.1    Kato, K.2    Naumkin, P.I.3
  • 14
    • 38349190717 scopus 로고    scopus 로고
    • Renormalization and blow up for charge one equivariant critical wave maps
    • Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), no. 3, 543-615.
    • (2008) Invent. Math. , vol.171 , Issue.3 , pp. 543-615
    • Krieger, J.1    Schlag, W.2    Tataru, D.3
  • 15
    • 75949130236 scopus 로고    scopus 로고
    • Uniqueness of ground states for pseudo-relativistic Hartree equations. Preprint
    • Lenzmann, E. Uniqueness of ground states for pseudo-relativistic Hartree equations. Preprint.
    • Lenzmann, E.1
  • 16
    • 84916181784 scopus 로고
    • Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation
    • (1977)
    • Lieb, E. H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl. Math. 57 (1976/77), no. 2, 93-105.
    • (1976) Studies in Appl. Math. , vol.57 , Issue.2 , pp. 93-105
    • Lieb, E.H.1
  • 17
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case. I
    • Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145.
    • (1984) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.1 , Issue.2 , pp. 109-145
    • Lions, P.-L.1
  • 18
    • 27544509563 scopus 로고    scopus 로고
    • Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
    • Martel, Y. Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Amer. J. Math. 127 (2005), no. 5, 1103-1140.
    • (2005) Amer. J. Math. , vol.127 , Issue.5 , pp. 1103-1140
    • Martel, Y.1
  • 19
    • 33750213593 scopus 로고    scopus 로고
    • Multi solitary waves for nonlinear Schrödinger equations
    • Martel, Y.; Merle, F. Multi solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), no. 6, 849-864.
    • (2006) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.23 , Issue.6 , pp. 849-864
    • Martel, Y.1    Merle, F.2
  • 20
    • 58149483712 scopus 로고    scopus 로고
    • Stability of two soliton collision for nonintegrable gKdV equations
    • Martel, Y.; Merle, F. Stability of two soliton collision for nonintegrable gKdV equations. Comm. Math. Phys. 286 (2009), no. 1, 39-79.
    • (2009) Comm. Math. Phys. , vol.286 , Issue.1 , pp. 39-79
    • Martel, Y.1    Merle, F.2
  • 21
    • 0036882736 scopus 로고    scopus 로고
    • Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations
    • Martel, Y.; Merle, F.; Tsai, T-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Comm. Math. Phys. 231 (2002), no. 2, 347-373.
    • (2002) Comm. Math. Phys. , vol.231 , Issue.2 , pp. 347-373
    • Martel, Y.1    Merle, F.2    Tsai, T.-P.3
  • 22
    • 33746039746 scopus 로고    scopus 로고
    • Stability in H1 of the sum of K solitary waves for some non-linear Schrödinger equations
    • Martel, Y.; Merle, F.; Tsai, T-P. Stability in H1 of the sum of K solitary waves for some non-linear Schrödinger equations. Duke Math. J. 133 (2006), no. 3, 405-466.
    • (2006) Duke Math. J. , vol.133 , Issue.3 , pp. 405-466
    • Martel, Y.1    Merle, F.2    Tsai, T.-P.3
  • 23
    • 0001337201 scopus 로고
    • Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity
    • Merle, F. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Comm. Math. Phys. 129 (1990), no. 2, 223-240.
    • (1990) Comm. Math. Phys. , vol.129 , Issue.2 , pp. 223-240
    • Merle, F.1
  • 24
    • 0041350485 scopus 로고    scopus 로고
    • Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation
    • Merle, F.; Raphaël, P. Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13 (2003), no. 3, 591-642.
    • (2003) Geom. Funct. Anal. , vol.13 , Issue.3 , pp. 591-642
    • Merle, F.1    Raphaël, P.2
  • 25
    • 11844298384 scopus 로고    scopus 로고
    • Dispersive analysis of charge transfer models
    • Rodnianski, I.; Schlag, W.; Soffer, A. Dispersive analysis of charge transfer models. Comm. Pure Appl. Math. 58 (2005), no. 2, 149-216.
    • (2005) Comm. Pure Appl. Math. , vol.58 , Issue.2 , pp. 149-216
    • Rodnianski, I.1    Schlag, W.2    Soffer, A.3
  • 27
    • 75949089972 scopus 로고    scopus 로고
    • A global compact attractor for high-dimensional defocusing non-linear Schrödinger equations with potential. arXiv: 0805.1544v2
    • Tao, T. A global compact attractor for high-dimensional defocusing non-linear Schrödinger equations with potential. arXiv: 0805.1544v2, 2008.
    • (2008)
    • Tao, T.1
  • 28
    • 0036221809 scopus 로고    scopus 로고
    • Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions
    • Tsai, T.-P.; Yau, H.-T. Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions. Comm. Pure Appl. Math. 55 (2002), no. 2, 153-216.
    • (2002) Comm. Pure Appl. Math. , vol.55 , Issue.2 , pp. 153-216
    • Tsai, T.-P.1    Yau, H.-T.2
  • 29
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491.
    • (1985) SIAM J. Math. Anal. , vol.16 , Issue.3 , pp. 472-491
    • Weinstein, M.I.1
  • 30
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • Weinstein, M. I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure. Appl. Math. 39 (1986), no. 1, 51-68.
    • (1986) Comm. Pure. Appl. Math. , vol.39 , Issue.1 , pp. 51-68
    • Weinstein, M.I.1
  • 31
    • 0002557939 scopus 로고
    • Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
    • translated from Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118-134
    • Zakharov, V. E.; Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34 (1972), no. 1, 62-69; translated from Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118-134.
    • (1972) Soviet Phys. JETP , vol.34 , Issue.1 , pp. 62-69
    • Zakharov, V.E.1    Shabat, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.