-
1
-
-
0020591567
-
Nonlinear scalar field equations. I Existence of a ground state
-
[BL]
-
[BL] H. BERESTYCKI, P.-L. LIONS, Nonlinear scalar field equations. I Existence of a ground state, Arch. Rational Mech. Anal. 82:4 (1983), 313-345.
-
(1983)
Arch. Rational Mech. Anal.
, vol.82
, Issue.4
, pp. 313-345
-
-
Berestycki, H.1
Lions, P.-L.2
-
2
-
-
0003230767
-
Global solutions of nonlinear Schrödinger equations
-
[Bo1]. American Mathematical Society, Providence, RI
-
[Bo1] J. BOURGAIN, Global Solutions of Nonlinear Schrödinger Equations, American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, 1999.
-
(1999)
American Mathematical Society Colloquium Publications
, vol.46
-
-
Bourgain, J.1
-
3
-
-
0002088365
-
Harmonic analysis and nonlinear partial differential equations
-
[Bo2], (Zurich, 1994), Birkhäuser, Basel 1,2
-
[Bo2] J. BOURGAIN, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians (Zurich, 1994), Birkhäuser, Basel 1,2 (1995), 31-44.
-
(1995)
Proceedings of the International Congress of Mathematicians
, pp. 31-44
-
-
Bourgain, J.1
-
4
-
-
0000246714
-
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
-
[BoW]
-
[BoW] J. BOURGAIN, W. WANG, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa C1. Sci. (4) 25:1-2 (1997), 197-215.
-
(1997)
Ann. Scuola Norm. Sup. Pisa C1. Sci. (4)
, vol.25
, Issue.1-2
, pp. 197-215
-
-
Bourgain, J.1
Wang, W.2
-
5
-
-
0011576999
-
Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors
-
[CW] (Washington, DC, 1987)
-
[CW] T. CAZENAVE, F. WEISSLER, Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), Springer Lecture Notes in Math. 1394 (1989), 18-29.
-
(1989)
Springer Lecture Notes in Math.
, vol.1394
, pp. 18-29
-
-
Cazenave, T.1
Weissler, F.2
-
6
-
-
0000256483
-
A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation
-
[FP]
-
[FP] G. FIBICH, G. PAPANICOLAOU, A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A 239:3 (1998), 167-173.
-
(1998)
Phys. Lett. A
, vol.239
, Issue.3
, pp. 167-173
-
-
Fibich, G.1
Papanicolaou, G.2
-
7
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
[GNN]
-
[GNN] B. GIDAS, W.M. NI, L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
8
-
-
84939873114
-
A priori bounds for positive solutions of nonlinear elliptic equations
-
[GS]
-
[GS] B. GIDAS, J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6:8 (1981), 883-901.
-
(1981)
Comm. Partial Differential Equations
, vol.6
, Issue.8
, pp. 883-901
-
-
Gidas, B.1
Spruck, J.2
-
9
-
-
0041625080
-
Elliptic partial differential equations of second order
-
[GiT] (Reprint of the 1998 edition), Springer-Verlag, Berlin
-
[GiT] D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order (Reprint of the 1998 edition), Classics in Mathematics, Springer-Verlag, Berlin, 2001.
-
(2001)
Classics in Mathematics
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
10
-
-
49249148441
-
On a class of nonlinear Schrödinger equations, I The Cauchy problem, general case
-
[GinV]
-
[GinV] J. GINIBRE, G. VELO, On a class of nonlinear Schrödinger equations, I The Cauchy problem, general case, J. Funct. Anal. 32:1 (1979), 1-32.
-
(1979)
J. Funct. Anal.
, vol.32
, Issue.1
, pp. 1-32
-
-
Ginibre, J.1
Velo, G.2
-
11
-
-
21344478851
-
Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I
-
[GlM]
-
[GlM] L. GLANGETAS, F. MERLE, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I, Comm. Math. Phys. 160:1 (1994), 173-215.
-
(1994)
Comm. Math. Phys.
, vol.160
, Issue.1
, pp. 173-215
-
-
Glangetas, L.1
Merle, F.2
-
12
-
-
0001404168
-
On nonlinear Schrödinger equations
-
[K]
-
[K] T. KATO, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Theor. 46:1 (1987), 113-129.
-
(1987)
Ann. Inst. H. Poincaré Phys. Theor.
, vol.46
, Issue.1
, pp. 113-129
-
-
Kato, T.1
-
14
-
-
0000893351
-
Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension
-
[LPSS]
-
[LPSS] M.J. LANDMAN, G.G. PAPANICOLAOU, C. SULEM, P.-L. SULEM, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A (3) 38:8 (1988), 3837-3843.
-
(1988)
Phys. Rev. A (3)
, vol.38
, Issue.8
, pp. 3837-3843
-
-
Landman, M.J.1
Papanicolaou, G.G.2
Sulem, C.3
Sulem, P.-L.4
-
15
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case. I
-
[Li1]
-
[Li1] P.-L. LIONS, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaŕ Anal. Non Linéaire 1:2 (1984), 109-145.
-
(1984)
Ann. Inst. H. Poincaŕ Anal. Non Linéaire
, vol.1
, Issue.2
, pp. 109-145
-
-
Lions, P.-L.1
-
16
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case: II
-
[Li2]
-
[Li2] P.-L. LIONS, The concentration-compactness principle in the calculus of variations. The locally compact case: II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1:4 (1984), 223-283.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, Issue.4
, pp. 223-283
-
-
Lions, P.-L.1
-
17
-
-
0034164847
-
A liouville theorem for the critical generalized Korteweg-de Vries equation
-
[MM1]
-
[MM1] Y. MARTEL, F. MERLE, A liouville theorem for the critical generalized Korteweg-de Vries equation, Journal de Math. Pures et Appliquees 79 (2000), 339-425.
-
(2000)
Journal de Math. Pures et Appliquees
, vol.79
, pp. 339-425
-
-
Martel, Y.1
Merle, F.2
-
18
-
-
0012910983
-
Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation
-
[MM2], to appear
-
[MM2] Y. MARTEL, F. MERLE, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Annals of Math., to appear.
-
Annals of Math.
-
-
Martel, Y.1
Merle, F.2
-
20
-
-
0035635809
-
Instability of solitons for the critical generalized Korteweg-de Vries equation
-
[MM4]
-
[MM4] Y. MARTEL, F. MERLE, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. funct. anal. 11:1 (2001), 74-123.
-
(2001)
Geom. Funct. Anal.
, vol.11
, Issue.1
, pp. 74-123
-
-
Martel, Y.1
Merle, F.2
-
21
-
-
0035616659
-
Existence of blow-up solutions in the energy space for the critical generalized KdV equation
-
[Mel]
-
[Mel] F. MERLE, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14:3 (2001), 555-578.
-
(2001)
J. Amer. Math. Soc.
, vol.14
, Issue.3
, pp. 555-578
-
-
Merle, F.1
-
22
-
-
0003278684
-
Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations
-
[Me2], Proceeding of the International Congress of Mathematicians (Berlin, 1998)
-
[Me2] F. MERLE, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians (Berlin, 1998), Doc. Math. extra vol. III (1998), 57-66.
-
(1998)
Doc. Math. Extra Vol. III
, vol.3
, pp. 57-66
-
-
Merle, F.1
-
23
-
-
84974001368
-
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
-
[Me3]
-
[Me3] F. MERLE, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69:2 (1993), 427-454.
-
(1993)
Duke Math. J.
, vol.69
, Issue.2
, pp. 427-454
-
-
Merle, F.1
-
24
-
-
0030510597
-
Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two
-
[Me4]
-
[Me4] F. MERLE, Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two, Comm. Pure Appl. Math. 49:8 (1996), 765-794.
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, Issue.8
, pp. 765-794
-
-
Merle, F.1
-
26
-
-
0033484486
-
Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power
-
[N]
-
[N] H. NAWA, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52:2 (1999), 193-270.
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.2
, pp. 193-270
-
-
Nawa, H.1
-
27
-
-
0000835523
-
1 solution for the nonlinear Schrödinger equation
-
[OT]
-
1 solution for the nonlinear Schrödinger equation, J. Differential Equations 92:2 (1991), 317-330.
-
(1991)
J. Differential Equations
, vol.92
, Issue.2
, pp. 317-330
-
-
Ogawa, T.1
Tsutsumi, Y.2
-
28
-
-
0000028784
-
Singular solutions of the Zakharov equations for Langmuir turbulence
-
[PSSW]
-
[PSSW] G.C. PAPANICOLAOU, C. SULEM, P.-L. SULEM, X.P. WANG, Singular solutions of the Zakharov equations for Langmuir turbulence, Phys. Fluids B 3:4 (1991), 969-980.
-
(1991)
Phys. Fluids B
, vol.3
, Issue.4
, pp. 969-980
-
-
Papanicolaou, G.C.1
Sulem, C.2
Sulem, P.-L.3
Wang, X.P.4
-
29
-
-
0041625081
-
On the blow up phenomenon for the critical nonlinear Schrödinger equation in ID
-
[Pe], to appear
-
[Pe] G. PERELMAN, On the blow up phenomenon for the critical nonlinear Schrödinger equation in ID, Annale Henri Poincaré, to appear.
-
Annale Henri Poincaré
-
-
Perelman, G.1
-
30
-
-
84971947811
-
On an elliptic equation related to the blow up phenomenon in the nonlinear Schrödinger equation
-
[RX]
-
[RX] J. RUSSELL, P. XINGBIN, On an elliptic equation related to the blow up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Ed. 123 A (1993), 763-782.
-
(1993)
Proc. Roy. Soc. Ed.
, vol.123
, Issue.A
, pp. 763-782
-
-
Russell, J.1
Xingbin, P.2
-
31
-
-
0003230098
-
The nonlinear Schrödinger equation. Self-focusing and wave collapse
-
[SS], Springer-Verlag, New York
-
[SS] C. SULEM, P.-L. SULEM, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.
-
(1999)
Applied Mathematical Sciences
, vol.139
-
-
Sulem, C.1
Sulem, P.-L.2
-
32
-
-
84990553584
-
Lyapunov stability of ground states of nonlinear dispersive evolution equations
-
[W1]
-
[W1] M.I. WEINSTEIN, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39 (1986), 51-68.
-
(1986)
Comm. Pure. Appl. Math.
, vol.39
, pp. 51-68
-
-
Weinstein, M.I.1
-
33
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
[W2]
-
[W2] M.I. WEINSTEIN, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491.
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 472-491
-
-
Weinstein, M.I.1
-
34
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
[W3]
-
[W3] M.I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576.
-
(1983)
Comm. Math. Phys.
, vol.87
, pp. 567-576
-
-
Weinstein, M.I.1
-
35
-
-
0002557939
-
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
-
[ZS]
-
[ZS] V.E. ZAKHAROV, A.B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62-69.
-
(1972)
Sov. Phys. JETP
, vol.34
, pp. 62-69
-
-
Zakharov, V.E.1
Shabat, A.B.2
|