메뉴 건너뛰기




Volumn 13, Issue 3, 2003, Pages 591-642

Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0041350485     PISSN: 1016443X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00039-003-0424-9     Document Type: Article
Times cited : (170)

References (35)
  • 1
    • 0020591567 scopus 로고
    • Nonlinear scalar field equations. I Existence of a ground state
    • [BL]
    • [BL] H. BERESTYCKI, P.-L. LIONS, Nonlinear scalar field equations. I Existence of a ground state, Arch. Rational Mech. Anal. 82:4 (1983), 313-345.
    • (1983) Arch. Rational Mech. Anal. , vol.82 , Issue.4 , pp. 313-345
    • Berestycki, H.1    Lions, P.-L.2
  • 2
    • 0003230767 scopus 로고    scopus 로고
    • Global solutions of nonlinear Schrödinger equations
    • [Bo1]. American Mathematical Society, Providence, RI
    • [Bo1] J. BOURGAIN, Global Solutions of Nonlinear Schrödinger Equations, American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, 1999.
    • (1999) American Mathematical Society Colloquium Publications , vol.46
    • Bourgain, J.1
  • 3
    • 0002088365 scopus 로고
    • Harmonic analysis and nonlinear partial differential equations
    • [Bo2], (Zurich, 1994), Birkhäuser, Basel 1,2
    • [Bo2] J. BOURGAIN, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians (Zurich, 1994), Birkhäuser, Basel 1,2 (1995), 31-44.
    • (1995) Proceedings of the International Congress of Mathematicians , pp. 31-44
    • Bourgain, J.1
  • 4
    • 0000246714 scopus 로고    scopus 로고
    • Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
    • [BoW]
    • [BoW] J. BOURGAIN, W. WANG, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa C1. Sci. (4) 25:1-2 (1997), 197-215.
    • (1997) Ann. Scuola Norm. Sup. Pisa C1. Sci. (4) , vol.25 , Issue.1-2 , pp. 197-215
    • Bourgain, J.1    Wang, W.2
  • 5
    • 0011576999 scopus 로고
    • Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors
    • [CW] (Washington, DC, 1987)
    • [CW] T. CAZENAVE, F. WEISSLER, Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), Springer Lecture Notes in Math. 1394 (1989), 18-29.
    • (1989) Springer Lecture Notes in Math. , vol.1394 , pp. 18-29
    • Cazenave, T.1    Weissler, F.2
  • 6
    • 0000256483 scopus 로고    scopus 로고
    • A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation
    • [FP]
    • [FP] G. FIBICH, G. PAPANICOLAOU, A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A 239:3 (1998), 167-173.
    • (1998) Phys. Lett. A , vol.239 , Issue.3 , pp. 167-173
    • Fibich, G.1    Papanicolaou, G.2
  • 7
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • [GNN]
    • [GNN] B. GIDAS, W.M. NI, L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 8
    • 84939873114 scopus 로고
    • A priori bounds for positive solutions of nonlinear elliptic equations
    • [GS]
    • [GS] B. GIDAS, J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6:8 (1981), 883-901.
    • (1981) Comm. Partial Differential Equations , vol.6 , Issue.8 , pp. 883-901
    • Gidas, B.1    Spruck, J.2
  • 9
    • 0041625080 scopus 로고    scopus 로고
    • Elliptic partial differential equations of second order
    • [GiT] (Reprint of the 1998 edition), Springer-Verlag, Berlin
    • [GiT] D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order (Reprint of the 1998 edition), Classics in Mathematics, Springer-Verlag, Berlin, 2001.
    • (2001) Classics in Mathematics
    • Gilbarg, D.1    Trudinger, N.S.2
  • 10
    • 49249148441 scopus 로고
    • On a class of nonlinear Schrödinger equations, I The Cauchy problem, general case
    • [GinV]
    • [GinV] J. GINIBRE, G. VELO, On a class of nonlinear Schrödinger equations, I The Cauchy problem, general case, J. Funct. Anal. 32:1 (1979), 1-32.
    • (1979) J. Funct. Anal. , vol.32 , Issue.1 , pp. 1-32
    • Ginibre, J.1    Velo, G.2
  • 11
    • 21344478851 scopus 로고
    • Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I
    • [GlM]
    • [GlM] L. GLANGETAS, F. MERLE, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I, Comm. Math. Phys. 160:1 (1994), 173-215.
    • (1994) Comm. Math. Phys. , vol.160 , Issue.1 , pp. 173-215
    • Glangetas, L.1    Merle, F.2
  • 12
    • 0001404168 scopus 로고
    • On nonlinear Schrödinger equations
    • [K]
    • [K] T. KATO, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Theor. 46:1 (1987), 113-129.
    • (1987) Ann. Inst. H. Poincaré Phys. Theor. , vol.46 , Issue.1 , pp. 113-129
    • Kato, T.1
  • 14
    • 0000893351 scopus 로고
    • Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension
    • [LPSS]
    • [LPSS] M.J. LANDMAN, G.G. PAPANICOLAOU, C. SULEM, P.-L. SULEM, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A (3) 38:8 (1988), 3837-3843.
    • (1988) Phys. Rev. A (3) , vol.38 , Issue.8 , pp. 3837-3843
    • Landman, M.J.1    Papanicolaou, G.G.2    Sulem, C.3    Sulem, P.-L.4
  • 15
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case. I
    • [Li1]
    • [Li1] P.-L. LIONS, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaŕ Anal. Non Linéaire 1:2 (1984), 109-145.
    • (1984) Ann. Inst. H. Poincaŕ Anal. Non Linéaire , vol.1 , Issue.2 , pp. 109-145
    • Lions, P.-L.1
  • 16
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case: II
    • [Li2]
    • [Li2] P.-L. LIONS, The concentration-compactness principle in the calculus of variations. The locally compact case: II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1:4 (1984), 223-283.
    • (1984) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.1 , Issue.4 , pp. 223-283
    • Lions, P.-L.1
  • 17
    • 0034164847 scopus 로고    scopus 로고
    • A liouville theorem for the critical generalized Korteweg-de Vries equation
    • [MM1]
    • [MM1] Y. MARTEL, F. MERLE, A liouville theorem for the critical generalized Korteweg-de Vries equation, Journal de Math. Pures et Appliquees 79 (2000), 339-425.
    • (2000) Journal de Math. Pures et Appliquees , vol.79 , pp. 339-425
    • Martel, Y.1    Merle, F.2
  • 18
    • 0012910983 scopus 로고    scopus 로고
    • Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation
    • [MM2], to appear
    • [MM2] Y. MARTEL, F. MERLE, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Annals of Math., to appear.
    • Annals of Math.
    • Martel, Y.1    Merle, F.2
  • 20
    • 0035635809 scopus 로고    scopus 로고
    • Instability of solitons for the critical generalized Korteweg-de Vries equation
    • [MM4]
    • [MM4] Y. MARTEL, F. MERLE, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. funct. anal. 11:1 (2001), 74-123.
    • (2001) Geom. Funct. Anal. , vol.11 , Issue.1 , pp. 74-123
    • Martel, Y.1    Merle, F.2
  • 21
    • 0035616659 scopus 로고    scopus 로고
    • Existence of blow-up solutions in the energy space for the critical generalized KdV equation
    • [Mel]
    • [Mel] F. MERLE, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14:3 (2001), 555-578.
    • (2001) J. Amer. Math. Soc. , vol.14 , Issue.3 , pp. 555-578
    • Merle, F.1
  • 22
    • 0003278684 scopus 로고    scopus 로고
    • Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations
    • [Me2], Proceeding of the International Congress of Mathematicians (Berlin, 1998)
    • [Me2] F. MERLE, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians (Berlin, 1998), Doc. Math. extra vol. III (1998), 57-66.
    • (1998) Doc. Math. Extra Vol. III , vol.3 , pp. 57-66
    • Merle, F.1
  • 23
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • [Me3]
    • [Me3] F. MERLE, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69:2 (1993), 427-454.
    • (1993) Duke Math. J. , vol.69 , Issue.2 , pp. 427-454
    • Merle, F.1
  • 24
    • 0030510597 scopus 로고    scopus 로고
    • Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two
    • [Me4]
    • [Me4] F. MERLE, Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two, Comm. Pure Appl. Math. 49:8 (1996), 765-794.
    • (1996) Comm. Pure Appl. Math. , vol.49 , Issue.8 , pp. 765-794
    • Merle, F.1
  • 26
    • 0033484486 scopus 로고    scopus 로고
    • Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power
    • [N]
    • [N] H. NAWA, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52:2 (1999), 193-270.
    • (1999) Comm. Pure Appl. Math. , vol.52 , Issue.2 , pp. 193-270
    • Nawa, H.1
  • 27
    • 0000835523 scopus 로고
    • 1 solution for the nonlinear Schrödinger equation
    • [OT]
    • 1 solution for the nonlinear Schrödinger equation, J. Differential Equations 92:2 (1991), 317-330.
    • (1991) J. Differential Equations , vol.92 , Issue.2 , pp. 317-330
    • Ogawa, T.1    Tsutsumi, Y.2
  • 28
    • 0000028784 scopus 로고
    • Singular solutions of the Zakharov equations for Langmuir turbulence
    • [PSSW]
    • [PSSW] G.C. PAPANICOLAOU, C. SULEM, P.-L. SULEM, X.P. WANG, Singular solutions of the Zakharov equations for Langmuir turbulence, Phys. Fluids B 3:4 (1991), 969-980.
    • (1991) Phys. Fluids B , vol.3 , Issue.4 , pp. 969-980
    • Papanicolaou, G.C.1    Sulem, C.2    Sulem, P.-L.3    Wang, X.P.4
  • 29
    • 0041625081 scopus 로고    scopus 로고
    • On the blow up phenomenon for the critical nonlinear Schrödinger equation in ID
    • [Pe], to appear
    • [Pe] G. PERELMAN, On the blow up phenomenon for the critical nonlinear Schrödinger equation in ID, Annale Henri Poincaré, to appear.
    • Annale Henri Poincaré
    • Perelman, G.1
  • 30
    • 84971947811 scopus 로고
    • On an elliptic equation related to the blow up phenomenon in the nonlinear Schrödinger equation
    • [RX]
    • [RX] J. RUSSELL, P. XINGBIN, On an elliptic equation related to the blow up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Ed. 123 A (1993), 763-782.
    • (1993) Proc. Roy. Soc. Ed. , vol.123 , Issue.A , pp. 763-782
    • Russell, J.1    Xingbin, P.2
  • 31
    • 0003230098 scopus 로고    scopus 로고
    • The nonlinear Schrödinger equation. Self-focusing and wave collapse
    • [SS], Springer-Verlag, New York
    • [SS] C. SULEM, P.-L. SULEM, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.
    • (1999) Applied Mathematical Sciences , vol.139
    • Sulem, C.1    Sulem, P.-L.2
  • 32
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • [W1]
    • [W1] M.I. WEINSTEIN, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39 (1986), 51-68.
    • (1986) Comm. Pure. Appl. Math. , vol.39 , pp. 51-68
    • Weinstein, M.I.1
  • 33
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • [W2]
    • [W2] M.I. WEINSTEIN, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491.
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 34
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • [W3]
    • [W3] M.I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576.
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1
  • 35
    • 0002557939 scopus 로고
    • Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
    • [ZS]
    • [ZS] V.E. ZAKHAROV, A.B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62-69.
    • (1972) Sov. Phys. JETP , vol.34 , pp. 62-69
    • Zakharov, V.E.1    Shabat, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.