메뉴 건너뛰기




Volumn 2011, Issue 1, 2011, Pages 23-94

A class of solutions to the 3D cubic nonlinear Schrödinger equation that blows up on a circle

Author keywords

[No Author keywords available]

Indexed keywords

AXIALLY SYMMETRIC; BLOW-UP; CONDENSED-MATTER THEORY; DINGER EQUATION; FINITE TIME; PLASMA PHYSICS; QUINTIC;

EID: 79952911434     PISSN: 16871200     EISSN: 16871197     Source Type: Journal    
DOI: 10.1093/amrx/abq016     Document Type: Article
Times cited : (17)

References (44)
  • 1
  • 2
    • 0003488984 scopus 로고
    • 3rd ed. McGraw-Hill Series in Electrical Engineering: Circuits and Systems. New York: McGraw-Hill, ISBN: 0-07-007015-6
    • Bracewell, R. N. The Fourier Transform and Its Applications, 3rd ed. McGraw-Hill Series in Electrical Engineering: Circuits and Systems. New York: McGraw-Hill, 1986. xx+474 pp. ISBN: 0-07-007015-6.
    • (1986) The Fourier Transform and its Applications
    • Bracewell, R.N.1
  • 3
    • 0035255579 scopus 로고    scopus 로고
    • Maximal functions associated to filtrations
    • DOI 10.1006/jfan.2000.3687, PII S0022123600936875
    • Christ, M. and A. Kiselev. "Maximal functions associated to filtrations." Journal of Functional Analysis 179(2001):409-25. (Pubitemid 33380869)
    • (2001) Journal of Functional Analysis , vol.179 , Issue.2 , pp. 409-425
    • Christ, M.1    Kiselev, A.2
  • 4
    • 59349111935 scopus 로고    scopus 로고
    • Scattering for the non-radial 3D cubic nonlinear Schrödinger equation
    • Duyckaerts, T., J. Holmer, and S. Roudenko. "Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. " Mathematical Research Letters 15, no. 6(2008):1233-50.
    • (2008) Mathematical Research Letters , vol.15 , Issue.6 , pp. 1233-1250
    • Duyckaerts, T.1    Holmer, J.2    Roudenko, S.3
  • 5
    • 63949086654 scopus 로고    scopus 로고
    • Dynamic of threshold solutions for energy critical NLS
    • Duyckaerts, T. and F. Merle. "Dynamic of threshold solutions for energy critical NLS." Geometric and Functional Analysis 18, no. 6(2009):1787-840.
    • (2009) Geometric and Functional Analysis , vol.18 , Issue.6 , pp. 1787-1840
    • Duyckaerts, T.1    Merle, F.2
  • 6
    • 77951143619 scopus 로고    scopus 로고
    • Threshold solutions for the focusing 3D cubic Schrödinger equation
    • Duyckaerts, T. and S. Roudenko. "Threshold solutions for the focusing 3D cubic Schrödinger equation. " Revista Matemática Iberoamericana 26, no. 1(2010):1-56.
    • (2010) Revista Matemática Iberoamericana , vol.26 , Issue.1 , pp. 1-56
    • Duyckaerts, T.1    Roudenko, S.2
  • 7
    • 33646377725 scopus 로고    scopus 로고
    • Version 0.5, accessed September 21, 2010
    • Evans, L. C. and M. Zworski. "Lectures on semiclassical analysis." Version 0.5 (2010); http://math.berkeley.edu/?zworski/ semiclassical.pdf (accessed September 21, 2010).
    • (2010) Lectures on Semiclassical analysis
    • Evans, L.C.1    Zworski, M.2
  • 8
    • 34249993538 scopus 로고    scopus 로고
    • Singular ring solutions of critical and supercritical nonlinear Schrödinger equations
    • DOI 10.1016/j.physd.2007.04.007, PII S0167278907001297
    • Fibich, G., N. Gavish, and X.-P. Wang. "Singular ring solutions of critical and supercritical nonlinear Schrödinger equations." Physica D 231, no. 1(2007):55-86. (Pubitemid 46891621)
    • (2007) Physica D: Nonlinear Phenomena , vol.231 , Issue.1 , pp. 55-86
    • Fibich, G.1    Gavish, N.2    Wang, X.-P.3
  • 9
    • 33746745308 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • DOI 10.1016/j.physd.2006.06.010, PII S0167278906002119
    • 2 critical nonlinear Schrödinger equation. " Physica D 220, no. 1(2006):1-13. (Pubitemid 44164669)
    • (2006) Physica D: Nonlinear Phenomena , vol.220 , Issue.1 , pp. 1-13
    • Fibich, G.1    Merle, F.2    Raphael, P.3
  • 10
    • 49249140378 scopus 로고
    • On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case
    • Ginibre, J. and G. Velo. "On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case." Journal of Functional Analysis 32, no. 1-32 (1979):33-71.
    • (1979) Journal of Functional Analysis , vol.32 , Issue.1-32 , pp. 33-71
    • Ginibre, J.1    Velo, G.2
  • 11
    • 1542429432 scopus 로고
    • Report No. R95031, Laboratoire d'Analyse Numérique, University Pierre and Marie Curie
    • 1 for nonlinear Schrödinger equation. " Report No. R95031, Laboratoire d'Analyse Numérique, University Pierre and Marie Curie, 1995.
    • (1995) 1 for Nonlinear Schrödinger Equation
    • Glangetas, L.1    Merle, F.2
  • 12
    • 36749114276 scopus 로고
    • On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation
    • Glassey, R. "On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation. " Journal of Mathematical Physics 18, no. 9(1977):1794-97.
    • (1977) Journal of Mathematical Physics , vol.18 , Issue.9 , pp. 1794-1797
    • Glassey, R.1
  • 13
    • 77949739721 scopus 로고    scopus 로고
    • Blow-up criteria for the 3D cubic nonlinear Schrödinger equation
    • Holmer, J., R. Platte, and S. Roudenko. "Blow-up criteria for the 3D cubic nonlinear Schrödinger equation. " Nonlinearity 23(2010):977-1030.
    • (2010) Nonlinearity , vol.23 , pp. 977-1030
    • Holmer, J.1    Platte, R.2    Roudenko, S.3
  • 14
    • 77955700830 scopus 로고    scopus 로고
    • On blow-up solutions to the 3D cubic nonlinear Schrödinger equation
    • Holmer, J. and S. Roudenko. "On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. " Applied Mathematics Research eXpress 1(2007):31.
    • (2007) Applied Mathematics Research eXpress , vol.1 , pp. 31
    • Holmer, J.1    Roudenko, S.2
  • 15
    • 47749109045 scopus 로고    scopus 로고
    • A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation
    • Holmer, J. and S. Roudenko. "A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. " Communications in Mathematical Physics 282, no. 2(2008):435-67.
    • (2008) Communications in Mathematical Physics , vol.282 , Issue.2 , pp. 435-467
    • Holmer, J.1    Roudenko, S.2
  • 17
    • 0001138601 scopus 로고    scopus 로고
    • Endpoint Strichartz estimates
    • Keel, M. and T. Tao. "Endpoint Strichartz estimates." American Journal of Mathematics 120(1998):955-80. (Pubitemid 128379918)
    • (1998) American Journal of Mathematics , vol.120 , Issue.5 , pp. 955-980
    • Keel, M.1    Terence, T.2
  • 18
    • 33750526878 scopus 로고    scopus 로고
    • Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
    • DOI 10.1007/s00222-006-0011-4
    • Kenig, C. E. and F. Merle. "Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case." Inventiones Mathematicae 166, no. 3(2006):645-75. (Pubitemid 44663366)
    • (2006) Inventiones Mathematicae , vol.166 , Issue.3 , pp. 645-675
    • Kenig, C.E.1    Merle, F.2
  • 22
    • 0031165953 scopus 로고    scopus 로고
    • Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces
    • PII S0362546X96000363
    • Martel, Y. "Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces." Nonlinear Analysis 28, no. 12(1997):1903-08. (Pubitemid 127417734)
    • (1997) Nonlinear Analysis, Theory, Methods and Applications , vol.28 , Issue.12 , pp. 1903-1908
    • Martel, Y.1
  • 23
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • Merle, F. "Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power." Duke Mathematical Journal 69, no. 2(1993):427-54.
    • (1993) Duke Mathematical Journal , vol.69 , Issue.2 , pp. 427-454
    • Merle, F.1
  • 24
    • 0041350485 scopus 로고    scopus 로고
    • Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation
    • DOI 10.1007/s00039-003-0424-9
    • Merle, F. and P. Raphaël. "Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. " Geometric and Functional Analysis 13, no. 3(2003):591-642. (Pubitemid 37049166)
    • (2003) Geometric and Functional Analysis , vol.13 , Issue.3 , pp. 591-642
    • Merle, F.1    Raphael, P.2
  • 25
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • DOI 10.1007/s00222-003-0346-z
    • 2 critical nonlinear Schrödinger equation. " Inventiones Mathematicae 156, no. 3(2004):565-672. (Pubitemid 38739738)
    • (2004) Inventiones Mathematicae , vol.156 , Issue.3 , pp. 565-672
    • Merle, F.1    Raphael, P.2
  • 26
    • 20444437961 scopus 로고    scopus 로고
    • The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation
    • Merle, F. and P. Raphaël. "The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. " Annals of Mathematics. Second Series 161, no. 1(2005):157-222. (Pubitemid 41137799)
    • (2005) Annals of Mathematics , vol.161 , Issue.1 , pp. 157-222
    • Merle, F.1    Raphael, P.2
  • 27
    • 12444281836 scopus 로고    scopus 로고
    • Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
    • Merle, F. and P. Raphaël. "Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. " Communications in Mathematical Physics 253, no. 3(2005):675-704.
    • (2005) Communications in Mathematical Physics , vol.253 , Issue.3 , pp. 675-704
    • Merle, F.1    Raphaël, P.2
  • 28
    • 30644464564 scopus 로고    scopus 로고
    • 2 critical nonlinear schrödinger equation
    • DOI 10.1090/S0894-0347-05-00499-6, PII S0894034705004996
    • 2 critical nonlinear Schrödinger equation. " Journal of American Mathematical Society 19, no. 1(2006):37-90. (Pubitemid 43089183)
    • (2006) Journal of the American Mathematical Society , vol.19 , Issue.1 , pp. 37-90
    • Merle, F.1    Raphael, P.2
  • 30
    • 0033484486 scopus 로고    scopus 로고
    • Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power
    • Nawa, H. "Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power." Communications on Pure and Applied Mathematics 52, no. 2(1999):193-270.
    • (1999) Communications on Pure and Applied Mathematics , vol.52 , Issue.2 , pp. 193-270
    • Nawa, H.1
  • 32
    • 13844296411 scopus 로고    scopus 로고
    • Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation
    • DOI 10.1007/s00208-004-0596-0
    • Raphaël, P. "Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation. " Mathematische Annalen 331, no. 3(2005):577-609. (Pubitemid 40251235)
    • (2005) Mathematische Annalen , vol.331 , Issue.3 , pp. 577-609
    • Raphael, P.1
  • 33
    • 33748575882 scopus 로고    scopus 로고
    • 2-supercritical nonlinear Schrödinger equation
    • DOI 10.1215/S0012-7094-06-13421-X
    • 2-supercritical nonlinear Schrödinger equation. " Duke Mathematical Journal 134, no. 2(2006):199-258. (Pubitemid 44367791)
    • (2006) Duke Mathematical Journal , vol.134 , Issue.2 , pp. 199-258
    • Raphael, P.1
  • 34
    • 70350025320 scopus 로고    scopus 로고
    • Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation
    • Raphaël, P. and J. Szeftel. "Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation. " Communications in Mathematical Physics 290, no. 3(2009):973-96.
    • (2009) Communications in Mathematical Physics , vol.290 , Issue.3 , pp. 973-996
    • Raphaël, P.1    Szeftel, J.2
  • 36
    • 0000540347 scopus 로고
    • Existence of solitary waves in higher dimensions
    • Strauss, W. "Existence of solitary waves in higher dimensions." Communications in Mathematical Physics 55, no. 2(1977):149-62.
    • (1977) Communications in Mathematical Physics , vol.55 , Issue.2 , pp. 149-162
    • Strauss, W.1
  • 37
    • 84972553620 scopus 로고
    • Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
    • Strichartz, R. "Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations." Duke Mathematical Journal 44(1977):705-14.
    • (1977) Duke Mathematical Journal , vol.44 , pp. 705-714
    • Strichartz, R.1
  • 38
    • 0003230098 scopus 로고    scopus 로고
    • The nonlinear Schrödinger equation: Self-focusing and wave collapse
    • New York: Springer
    • Sulem, C. and P.-L. Sulem. "The nonlinear Schrödinger equation: self-focusing and wave collapse." Applied Mathematical Sciences, vol. 139. New York: Springer, 1999. xvi+350 pp.
    • (1999) Applied Mathematical Sciences , vol.139
    • Sulem, C.1    Sulem, P.-L.2
  • 40
    • 18644384025 scopus 로고
    • Averaged description of wave beams in linear and nonlinear media (the method of moments)
    • Vlasov, S. N., V. A. Petrishchev, and V. I. Talanov. "Averaged description of wave beams in linear and nonlinear media (the method of moments)." Radiophysics and Quantum Electronics 14(1971):1062-70
    • (1971) Radiophysics and Quantum. Electronics , vol.14 , pp. 1062-1070
    • Vlasov, S.N.1    Petrishchev, V.A.2    Talanov, V.I.3
  • 42
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • Weinstein, M. "Nonlinear Schrödinger equations and sharp interpolation estimates." Communications in Mathematical Physics 87, no. 4 (1982/83): 567-76.
    • (1982) Communications in Mathematical Physics , vol.87 , Issue.4 , pp. 567-576
    • Weinstein, M.1
  • 43
    • 0001596227 scopus 로고
    • Collapse of langmuir waves
    • Zakharov, V. E. "Collapse of Langmuir waves." Soviet Physics-JETP 35(1972):908-14.
    • (1972) Soviet Physics-JETP , vol.35 , pp. 908-914
    • Zakharov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.