메뉴 건너뛰기




Volumn 130, Issue 4, 2008, Pages 945-978

Blow up of the critical norm for some radial L2 super critical nonlinear Schrödinger equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 50049127248     PISSN: 00029327     EISSN: None     Source Type: Journal    
DOI: 10.1353/ajm.0.0012     Document Type: Article
Times cited : (67)

References (19)
  • 2
    • 0011576999 scopus 로고
    • Some remarks on the nonlinear Schrödinger equation in the critical case
    • Nonlinear Semigroups, Partial Differential Equations and Attractors Washington, DC, Springer-Verlag, Berlin
    • Th. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987), Lecture Notes in Math., vol. 1394, Springer-Verlag, Berlin, 1989, pp. 18-29.
    • (1987) Lecture Notes in Math , vol.1394 , pp. 18-29
    • Cazenave, T.1    Weissler, F.2
  • 3
    • 50049091988 scopus 로고    scopus 로고
    • On blow up solutions to NLS with low regularity initial data
    • preprint
    • J. Colliander, S. Raynor, C. Sulem, and D. Wright, On blow up solutions to NLS with low regularity initial data, preprint.
    • Colliander, J.1    Raynor, S.2    Sulem, C.3    Wright, D.4
  • 4
    • 50049090574 scopus 로고    scopus 로고
    • 3,∞-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2 (350), 3-44; translation, Russian Math. Surveys 58 (2003), no. 2, 211-250.
    • 3,∞-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2 (350), 3-44; translation, Russian Math. Surveys 58 (2003), no. 2, 211-250.
  • 5
    • 49249148441 scopus 로고
    • On a class of nonlinear Schrödinger equations. I, The Cauchy problem, general case
    • J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I, The Cauchy problem, general case, J. Fund. Anal. 32 (1979), no. 1, 1-32.
    • (1979) J. Fund. Anal , vol.32 , Issue.1 , pp. 1-32
    • Ginibre, J.1    Velo, G.2
  • 6
    • 50049114945 scopus 로고    scopus 로고
    • 1 for nonlinear Schrödinger equation, prepublication, Univ. P. M. Curie, R95031.
    • 1 for nonlinear Schrödinger equation, prepublication, Univ. P. M. Curie, R95031.
  • 7
    • 0037091782 scopus 로고    scopus 로고
    • Blowup in the nonlinear Schrödinger equation near critical dimension
    • T. J. Kaper and V. Rottschäfer, Blowup in the nonlinear Schrödinger equation near critical dimension, J. Math. Anal. Appl. 268 (2002), no. 2, 517-549.
    • (2002) J. Math. Anal. Appl , vol.268 , Issue.2 , pp. 517-549
    • Kaper, T.J.1    Rottschäfer, V.2
  • 8
    • 0036016142 scopus 로고    scopus 로고
    • 2-critical generalized KdV equation
    • 2-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), no. 3, 617-664.
    • (2002) J. Amer. Math. Soc , vol.15 , Issue.3 , pp. 617-664
    • Martel, Y.1    Merle, F.2
  • 9
    • 0036000529 scopus 로고    scopus 로고
    • Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math, 2) 155 2002, no. 1, 235-280
    • Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2) 155 (2002), no. 1, 235-280.
  • 10
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 2 critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), 565-672.
    • (2004) Invent. Math , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 11
    • 20444437961 scopus 로고    scopus 로고
    • Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann of Math. 161 (2005), no. 1, 157-222.
    • Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann of Math. 161 (2005), no. 1, 157-222.
  • 12
    • 50049113820 scopus 로고    scopus 로고
    • On one blow up point solutions to the critical non linear Schrödinger equation, J. Hyperbolic Differential Equations 2 (2005), no. 4, 919-962.
    • On one blow up point solutions to the critical non linear Schrödinger equation, J. Hyperbolic Differential Equations 2 (2005), no. 4, 919-962.
  • 13
    • 30644464564 scopus 로고    scopus 로고
    • Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37-90.
    • Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37-90.
  • 14
    • 0000704928 scopus 로고
    • 2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity
    • 2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations 84 (1990), 205-214.
    • (1990) J. Differential Equations , vol.84 , pp. 205-214
    • Merle, F.1    Tsutsumi, Y.2
  • 15
    • 0000835523 scopus 로고
    • 1 solution for the nonlinear Schrödinger equation
    • 1 solution for the nonlinear Schrödinger equation, J. Differential Equations 92 (1991), no. 2, 317-330.
    • (1991) J. Differential Equations , vol.92 , Issue.2 , pp. 317-330
    • Ogawa, T.1    Tsutsumi, Y.2
  • 16
    • 33748575882 scopus 로고    scopus 로고
    • 2 supercritical nonlinear Schrödinger equation
    • 2 supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2) (2006), 199-258.
    • (2006) Duke Math. J , vol.134 , Issue.2 , pp. 199-258
    • Raphaël, P.1
  • 17
    • 84972553620 scopus 로고
    • Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
    • R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44 (1977), no. 3, 705-714.
    • (1977) Duke Math. J , vol.44 , Issue.3 , pp. 705-714
    • Strichartz, R.S.1
  • 19
    • 0002557939 scopus 로고
    • Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
    • V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62-69.
    • (1972) Sov. Phys. JETP , vol.34 , pp. 62-69
    • Zakharov, V.E.1    Shabat, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.