메뉴 건너뛰기




Volumn 36, Issue 3, 2010, Pages 487-531

Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation

Author keywords

Blow up; Manifold; Nonlinear schr dinger equation

Indexed keywords


EID: 78650453391     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605302.2010.513410     Document Type: Article
Times cited : (38)

References (39)
  • 2
    • 28444487069 scopus 로고    scopus 로고
    • Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
    • Banica, V. (2004). Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(1): 139-170.
    • (2004) Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) , vol.3 , Issue.1 , pp. 139-170
    • Banica, V.1
  • 3
    • 35648961455 scopus 로고    scopus 로고
    • The nonlinear Schrödinger equation on the hyperbolic space
    • Banica, V. (2007). The nonlinear Schrödinger equation on the hyperbolic space. Comm. Part. Diff. Eqs. 32:1643-1677.
    • (2007) Comm. Part. Diff. Eqs. , vol.32 , pp. 1643-1677
    • Banica, V.1
  • 4
    • 69549108626 scopus 로고    scopus 로고
    • On scattering for NLS: From Euclidean to hyperbolic space
    • Banica, V., Carles, R., Duyckaerts, T. (2009). On scattering for NLS: From Euclidean to hyperbolic space. Discrete Contin. Dyn. Syst. 24:1113-1127.
    • (2009) Discrete Contin. Dyn. Syst. , vol.24 , pp. 1113-1127
    • Banica, V.1    Carles, R.2    Duyckaerts, T.3
  • 5
    • 47749087020 scopus 로고    scopus 로고
    • Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space
    • Banica, V., Carles, R., Staffilani, G. (2008). Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space. Geom. Funct. Anal. 18:367-399.
    • (2008) Geom. Funct. Anal. , vol.18 , pp. 367-399
    • Banica, V.1    Carles, R.2    Staffilani, G.3
  • 6
    • 39349085612 scopus 로고    scopus 로고
    • Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds
    • Banica, V., Duyckaerts, T. (2007). Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds. Dyn. Part. Diff. Eq. 4:335-359.
    • (2007) Dyn. Part. Diff. Eq. , vol.4 , pp. 335-359
    • Banica, V.1    Duyckaerts, T.2
  • 7
    • 43349101598 scopus 로고    scopus 로고
    • A centre-stable manifold for the focusing cubic NLS in 1+3
    • Beceanu, M. (2008). A centre-stable manifold for the focusing cubic NLS in 1+3. Comm. Math. Phys. 280:145-205.
    • (2008) Comm. Math. Phys. , vol.280 , pp. 145-205
    • Beceanu, M.1
  • 9
    • 85167038869 scopus 로고    scopus 로고
    • American Mathematical Society Colloquium Publications, Providence, RI: American Mathematical Society
    • Bourgain, J. (1999). Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol. 46. Providence, RI: American Mathematical Society.
    • (1999) Global Solutions of Nonlinear Schrödinger Equations , vol.46
    • Bourgain, J.1
  • 10
    • 0000246714 scopus 로고    scopus 로고
    • Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
    • Bourgain, J., Wang, W. (1997). Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25:197-215.
    • (1997) Ann. Scuola Norm. Sup. Pisa Cl. Sci. , vol.25 , pp. 197-215
    • Bourgain, J.1    Wang, W.2
  • 11
    • 0038238334 scopus 로고    scopus 로고
    • Two singular dynamics of the nonlinear Schrödinger equation on a plane domain
    • Burq, N., Gérard, P., Tzvetkov, N. (2003). Two singular dynamics of the nonlinear Schrödinger equation on a plane domain. Geom. Funct. Anal. 13:1-19.
    • (2003) Geom. Funct. Anal. , vol.13 , pp. 1-19
    • Burq, N.1    Gérard, P.2    Tzvetkov, N.3
  • 12
    • 1542282092 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with repulsive harmonic potential and applications
    • Carles, R. (2003). Nonlinear Schrödinger equations with repulsive harmonic potential and applications. SIAM J. Math. Anal. 35:823-843.
    • (2003) SIAM J. Math. Anal. , vol.35 , pp. 823-843
    • Carles, R.1
  • 13
    • 85019485429 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with Stark potential
    • Carles, R., Nakamura, Y. (2004). Nonlinear Schrödinger equations with Stark potential. Hokkaido Math. J. 33:719-729.
    • (2004) Hokkaido Math. J. , vol.33 , pp. 719-729
    • Carles, R.1    Nakamura, Y.2
  • 16
    • 33746745308 scopus 로고    scopus 로고
    • Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation
    • Fibich, G., Merle, F., Raphaël, P. (2006). Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation. Phys. D 220:1-13.
    • (2006) Phys. , vol.220 D , pp. 1-13
    • Fibich, G.1    Merle, F.2    Raphaël, P.3
  • 17
    • 28444450137 scopus 로고    scopus 로고
    • Blowup theory for the critical nonlinear Schrödinger equations revisited
    • Hmidi, T., Keraani, S. (2005). Blowup theory for the critical nonlinear Schrödinger equations revisited. Int. Math. Res. Not. 2005:2815-2828.
    • (2005) Int. Math. Res. Not. , vol.2005 , pp. 2815-2828
    • Hmidi, T.1    Keraani, S.2
  • 18
    • 70350627598 scopus 로고    scopus 로고
    • Semilinear Schrödinger flows on hyperbolic spaces: Scattering in H1
    • Ionescu, A., Staffilani, G. (2009). Semilinear Schrödinger flows on hyperbolic spaces: Scattering in H1. Math. Ann. 345:133-158.
    • (2009) Math. Ann. , vol.345 , pp. 133-158
    • Ionescu, A.1    Staffilani, G.2
  • 19
    • 70449523102 scopus 로고    scopus 로고
    • On stability of pseudo-conformal blowup for L2-critical Hartree NLS
    • Krieger, J., Lenzmann, E., Raphaël, P. (2009). On stability of pseudo-conformal blowup for L2-critical Hartree NLS. Ann. Henri Poincaré 10:1159-1205.
    • (2009) Ann. Henri Poincaré , vol.10 , pp. 1159-1205
    • Krieger, J.1    Lenzmann, E.2    Raphaël, P.3
  • 20
    • 33749459423 scopus 로고    scopus 로고
    • Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
    • Krieger, J., Schlag, W. (2006). Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. 19:815-920.
    • (2006) J. Amer. Math. Soc. , vol.19 , pp. 815-920
    • Krieger, J.1    Schlag, W.2
  • 21
    • 34250849129 scopus 로고    scopus 로고
    • On the focusing critical semi-linear wave equation
    • Krieger, J., Schlag, W. (2007). On the focusing critical semi-linear wave equation. Amer. J. Math. 129:843-913.
    • (2007) Amer. J. Math. , vol.129 , pp. 843-913
    • Krieger, J.1    Schlag, W.2
  • 22
    • 70350005122 scopus 로고    scopus 로고
    • Non-generic blow-up solutions for the critical focusing NLS in 1-d
    • Krieger, J., Schlag, W. (2009). Non-generic blow-up solutions for the critical focusing NLS in 1-d. J. Eur. Math. Soc. 11:1-125.
    • (2009) J. Eur. Math. Soc. , vol.11 , pp. 1-125
    • Krieger, J.1    Schlag, W.2
  • 23
    • 27544509563 scopus 로고    scopus 로고
    • Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
    • Martel, Y. (2005). Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Amer. J. Math. 127:1103-1140.
    • (2005) Amer. J. Math. , vol.127 , pp. 1103-1140
    • Martel, Y.1
  • 25
    • 0001337201 scopus 로고
    • Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity
    • Merle, F. (1990). Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Comm. Math. Phys. 129: 223-240.
    • (1990) Comm. Math. Phys. , vol.129 , pp. 223-240
    • Merle, F.1
  • 26
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • Merle, F. (1993). Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69:427-454.
    • (1993) Duke Math. J. , vol.69 , pp. 427-454
    • Merle, F.1
  • 28
    • 2942586742 scopus 로고    scopus 로고
    • On universality of blow-up profile for L2 critical nonlinear Schrödinger equation
    • Merle, F., Raphaël, P. (2004). On universality of blow-up profile for L2 critical nonlinear Schrödinger equation. Invent. Math. 156:565-672.
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 29
    • 20444437961 scopus 로고    scopus 로고
    • The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation
    • Merle, F., Raphaël, P. (2005). The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 161: 157-222.
    • (2005) Ann. Math. , vol.161 , pp. 157-222
    • Merle, F.1    Raphaël, P.2
  • 30
    • 84968486052 scopus 로고
    • Blow-up of H1 solutions for the onedimensional nonlinear Schrödinger equation with critical power nonlinearity
    • Ogawa, T., Tsutsumi, Y. (1991). Blow-up of H1 solutions for the onedimensional nonlinear Schrödinger equation with critical power nonlinearity. Proc. Amer. Math. Soc. 111:487-496.
    • (1991) Proc. Amer. Math. Soc. , vol.111 , pp. 487-496
    • Ogawa, T.1    Tsutsumi, Y.2
  • 31
    • 0035537074 scopus 로고    scopus 로고
    • On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
    • Perelman, G. (2001). On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2:605-673.
    • (2001) Ann. Henri Poincaré , vol.2 , pp. 605-673
    • Perelman, G.1
  • 33
    • 34948897548 scopus 로고    scopus 로고
    • Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear Schrödinger equation in a domain
    • Planchon, F., Raphaël, P. (2007). Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear Schrödinger equation in a domain. Ann. Henri Poincaré 8:1177-1219.
    • (2007) Ann. Henri Poincaré , vol.8 , pp. 1177-1219
    • Planchon, F.1    Raphaël, P.2
  • 34
    • 13844296411 scopus 로고    scopus 로고
    • Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation
    • Raphaël, P. (2005). Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331:577-609.
    • (2005) Math. Ann. , vol.331 , pp. 577-609
    • Raphaël, P.1
  • 37
    • 0003419901 scopus 로고    scopus 로고
    • III. Applied Mathematical Sciences, New York Springer-Verlag
    • Taylor, M.E. (1997). Partial Differential Equations. III. Applied Mathematical Sciences, Vol. 117. New York: Springer-Verlag.
    • (1997) Partial Differential Equations , vol.117
    • Taylor, M.E.1
  • 38
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • Weinstein, M.I. (1982/1983). Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87:567-576.
    • (1982) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1
  • 39
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein, M.I. (1985). Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16:472-491.
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.