메뉴 건너뛰기




Volumn 39, Issue 4, 2007, Pages 1070-1111

Spectra of linearized operators for NLS solitary waves

Author keywords

Linearized operator; Nonlinear Schr dinger equation; Solitary waves; Spectrum; Stability

Indexed keywords

LINEARIZATION; LIQUID WAVES; MATHEMATICAL OPERATORS; NONLINEAR ANALYSIS; NONLINEAR EQUATIONS; STABILITY; WAVE EQUATIONS;

EID: 48249147411     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/050648389     Document Type: Article
Times cited : (167)

References (41)
  • 1
    • 0035732352 scopus 로고    scopus 로고
    • Dynamical instability of symmetric vortices
    • L. ALMEIDA AND Y. GUO, Dynamical instability of symmetric vortices, Rev. Mat. Iberoamericana, 17 (2001), pp. 409-419.
    • (2001) Rev. Mat. Iberoamericana , vol.17 , pp. 409-419
    • ALMEIDA, L.1    GUO, Y.2
  • 4
    • 0034923913 scopus 로고    scopus 로고
    • Simulation of instability of bright solitons for NLS with saturating nonlinearity
    • V. S. BUSLAEV AND V. E. GRIKUROV, Simulation of instability of bright solitons for NLS with saturating nonlinearity, Math. Comput. Simulation, 56 (2001), pp. 539-546.
    • (2001) Math. Comput. Simulation , vol.56 , pp. 539-546
    • BUSLAEV, V.S.1    GRIKUROV, V.E.2
  • 6
    • 0034215638 scopus 로고    scopus 로고
    • Algorithms and visualization for solutions of nonlinear elliptic equations
    • G. CHEN, J. ZHOU, AND W.-M. NL, Algorithms and visualization for solutions of nonlinear elliptic equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), pp. 1565-1612.
    • (2000) Internat. J. Bifur. Chaos Appl. Sci. Engrg , vol.10 , pp. 1565-1612
    • CHEN, G.1    ZHOU, J.2    NL, W.-M.3
  • 7
    • 2442581311 scopus 로고    scopus 로고
    • Purely nonlinear instability of standing waves with minimal energy
    • A. COMECH AND D. PELINOVSKY, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), pp. 1565-1607.
    • (2003) Comm. Pure Appl. Math , vol.56 , pp. 1565-1607
    • COMECH, A.1    PELINOVSKY, D.2
  • 8
    • 10244243814 scopus 로고    scopus 로고
    • Spectra of positive and negative energies in the linearized NLS problem
    • S. CUCCAGNA, D. PELINOVSKY, AND V. VOUGALTER, Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005), pp. 1-29.
    • (2005) Comm. Pure Appl. Math , vol.58 , pp. 1-29
    • CUCCAGNA, S.1    PELINOVSKY, D.2    VOUGALTER, V.3
  • 9
    • 33645070786 scopus 로고    scopus 로고
    • Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation
    • L. DEMANET AND W. SCHLAG, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19 (2006), pp. 829-852.
    • (2006) Nonlinearity , vol.19 , pp. 829-852
    • DEMANET, L.1    SCHLAG, W.2
  • 11
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed, John Hopkins University Press, Baltimore, MD
    • G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd ed., John Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • GOLUB, G.H.1    VAN LOAN, C.F.2
  • 13
    • 84990623184 scopus 로고
    • Linearized instability for nonlinear Schrödinger and Klein-Gordon equations
    • M. GRILLAKIS, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), pp. 747-774.
    • (1988) Comm. Pure Appl. Math , vol.41 , pp. 747-774
    • GRILLAKIS, M.1
  • 14
    • 0000468151 scopus 로고
    • Stability theory of solitary waves in the presence of symmetry I
    • M. GRILLAKIS, J. SHATAH, AND W. STRAUSS, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), pp. 160-197.
    • (1987) J. Funct. Anal , vol.74 , pp. 160-197
    • GRILLAKIS, M.1    SHATAH, J.2    STRAUSS, W.3
  • 15
    • 12344303082 scopus 로고    scopus 로고
    • Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves
    • S. GUSTAFSON. K. NAKANISHI. AND T.-P. TSAI, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 2004 (2004), pp. 3559-3584.
    • (2004) Int. Math. Res. Not , vol.2004 , pp. 3559-3584
    • GUSTAFSON, S.1    NAKANISHI, K.2    TSAI, T.-P.3
  • 16
    • 0036569430 scopus 로고    scopus 로고
    • Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions
    • T. M. HWANG AND W. WANG, Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 18 (2002), pp. 261-279.
    • (2002) Numer. Methods Partial Differential Equations , vol.18 , pp. 261-279
    • HWANG, T.M.1    WANG, W.2
  • 17
    • 0041011240 scopus 로고
    • Nonradiul solutions of a semihnear elliptic, equation in two dimensions
    • J. IAIA AND H. WARCHALL, Nonradiul solutions of a semihnear elliptic, equation in two dimensions, J. Differential Equations, 119 (1995), pp. 533 558.
    • (1995) J. Differential Equations , vol.119 , pp. 533-558
    • IAIA, J.1    WARCHALL, H.2
  • 18
    • 34247120263 scopus 로고    scopus 로고
    • On the asymptotic stability of bound states in 2D cubic Schrödinger equation
    • E. KIRR AND A. ZARNESCU, On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Comm. Math. Phys., 272 (2007), pp. 443-468.
    • (2007) Comm. Math. Phys , vol.272 , pp. 443-468
    • KIRR, E.1    ZARNESCU, A.2
  • 19
    • 34249974409 scopus 로고    scopus 로고
    • p = 0 in ℝ n, Arch. Rational Mech. Anal., 105 (1989), pp. 243-266.
    • p = 0 in ℝ n", Arch. Rational Mech. Anal., 105 (1989), pp. 243-266.
  • 20
    • 0035340409 scopus 로고    scopus 로고
    • A note on finite difference discretizations for Poisson equation on a disk
    • M.-C. LAI, A note on finite difference discretizations for Poisson equation on a disk, Numer. Methods Partial Differential Equations, 17 (2001), pp. 199-203.
    • (2001) Numer. Methods Partial Differential Equations , vol.17 , pp. 199-203
    • LAI, M.-C.1
  • 22
    • 0039232667 scopus 로고
    • Solutions complexes d'équations elliptiques semilinéaires dans R
    • P. L. LIONS, Solutions complexes d'équations elliptiques semilinéaires dans R, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), pp. 673-676.
    • (1986) C. R. Acad. Sci. Paris Sér. I Math , vol.302 , pp. 673-676
    • LIONS, P.L.1
  • 24
    • 33749414489 scopus 로고    scopus 로고
    • Vortex solitons for 2D focusing nonlinear- Schrödinger equation
    • T. MIZUMACHI, Vortex solitons for 2D focusing nonlinear- Schrödinger equation, Differential Integral Equations, 18 (2005), pp. 431-450.
    • (2005) Differential Integral Equations , vol.18 , pp. 431-450
    • MIZUMACHI, T.1
  • 25
    • 23844545009 scopus 로고    scopus 로고
    • Instability of bound states for 2D nonlinear Schrödinger equations
    • T. MIZUMACHI, Instability of bound states for 2D nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 13 (2005), pp. 413-428.
    • (2005) Discrete Contin. Dyn. Syst , vol.13 , pp. 413-428
    • MIZUMACHI, T.1
  • 26
    • 29244475727 scopus 로고    scopus 로고
    • A remark on linearly unstable standing wave solutions to NLS
    • T. MIZUMACHI, A remark on linearly unstable standing wave solutions to NLS, Nonlinear Anal., 64 (2006), pp. 657-676.
    • (2006) Nonlinear Anal , vol.64 , pp. 657-676
    • MIZUMACHI, T.1
  • 27
    • 42149181103 scopus 로고    scopus 로고
    • Instability of vortex solitons for 2D focusing NLS
    • T. MIZUMACHI, Instability of vortex solitons for 2D focusing NLS, Adv. Differential Equations, 12 (2007), pp. 241-264.
    • (2007) Adv. Differential Equations , vol.12 , pp. 241-264
    • MIZUMACHI, T.1
  • 28
    • 0000514956 scopus 로고
    • Eigenfunctions of the equation Δu + λf(u) = 0
    • S. I. POHOZAEV, Eigenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Dokl., 5 ( 1965), pp. 1408-1411.
    • (1965) Soviet Math. Dokl , vol.5 , pp. 1408-1411
    • POHOZAEV, S.I.1
  • 31
    • 48249147698 scopus 로고    scopus 로고
    • J. SHATAH AND W. STRAUSS, Spectral condition for instability, in Nonlinear PDE's, Dynamics and Continuum Physics (South Hadley, MA, 1998), Contemp. Math. 255, AMS, Providence, RI, 2000, pp. 189-198.
    • J. SHATAH AND W. STRAUSS, Spectral condition for instability, in Nonlinear PDE's, Dynamics and Continuum Physics (South Hadley, MA, 1998), Contemp. Math. 255, AMS, Providence, RI, 2000, pp. 189-198.
  • 32
    • 0000540347 scopus 로고
    • Existence of solitary waves in higher dimensions
    • W. STRAUSS, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), pp. 149-162.
    • (1977) Comm. Math. Phys , vol.55 , pp. 149-162
    • STRAUSS, W.1
  • 34
    • 48249130711 scopus 로고    scopus 로고
    • C. SUI, EM AND P.-L. SULEM, The Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse, Springer-Verlag, Berlin, 1999.
    • C. SUI, EM AND P.-L. SULEM, The Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse, Springer-Verlag, Berlin, 1999.
  • 36
    • 0036221809 scopus 로고    scopus 로고
    • Asymptotic dynamics of nonlinear Schroedinger equations: Resonance dominated and dispersion dominated solutions
    • T.-P. TSAI AND IL-T. YAU, Asymptotic dynamics of nonlinear Schroedinger equations: Resonance dominated and dispersion dominated solutions, Comm. Pure Appl. Math., 55 (2002), pp. 153-216.
    • (2002) Comm. Pure Appl. Math , vol.55 , pp. 153-216
    • TSAI, T.-P.1    YAU, I.L.-T.2
  • 37
    • 0036946822 scopus 로고    scopus 로고
    • Stable directions for excited states of nonlinear Schrödinger- equations
    • T.-P. TSAI AND H.-T. YAU, Stable directions for excited states of nonlinear Schrödinger- equations, Comm. Partial Differential Equations, 27 (2002), pp. 2363-2402.
    • (2002) Comm. Partial Differential Equations , vol.27 , pp. 2363-2402
    • TSAI, T.-P.1    YAU, H.-T.2
  • 38
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • M. I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), pp. 567-576.
    • (1982) Comm. Math. Phys , vol.87 , pp. 567-576
    • WEINSTEIN, M.I.1
  • 39
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • M. I. WEINSTEIN, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472-491.
    • (1985) SIAM J. Math. Anal , vol.16 , pp. 472-491
    • WEINSTEIN, M.I.1
  • 40
    • 84990553584 scopus 로고    scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • M. I. WEINSTEIN, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1386), pp. 51-68.
    • Comm. Pure Appl. Math , vol.39 , Issue.1386 , pp. 51-68
    • WEINSTEIN, M.I.1
  • 41
    • 0010980747 scopus 로고
    • Convergence of the LR, QR, and related algorithms
    • J. H. WILKINSON, Convergence of the LR, QR, and related algorithms, Comput. J., 8 (1965), pp. 77-84.
    • (1965) Comput. J , vol.8 , pp. 77-84
    • WILKINSON, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.