메뉴 건너뛰기




Volumn 28, Issue 4, 2014, Pages 1173-1184

Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation

Author keywords

Artificial intelligence methods; Heteregenous aquifer; Hydraulic conductivity; Supervised intelligence committee machine; Tasuj plain

Indexed keywords

ACCEPTABLE PERFORMANCE; ARTIFICIAL INTELLIGENCE METHODS; COMMITTEE MACHINES; CONDUCTIVITY ESTIMATION; HETEROGENEOUS AQUIFERS; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; SUPERVISED ARTIFICIAL NEURAL NETWORKS; TASUJ PLAIN;

EID: 84896738245     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-014-0553-y     Document Type: Article
Times cited : (45)

References (72)
  • 1
    • 84884951784 scopus 로고
    • Abkav Consulting Engineering Company, Persian: East Azerbaijan Regional Water Authority
    • Abkav Consulting Engineering Company (1973) Geophysical studies reports of Tabriz, Tasuj and Shabestar plains. East Azerbaijan Regional Water Authority, Persian.
    • (1973) Geophysical Studies Reports of Tabriz, Tasuj and Shabestar Plains
  • 2
    • 69249248102 scopus 로고    scopus 로고
    • Fuzzy rule based models modification by new data: application to flood flow forecasting
    • Akbari M, Afshar A, Sadrabadi MR (2009) Fuzzy rule based models modification by new data: application to flood flow forecasting. Water Resour Manag 23(12): 2491-2504.
    • (2009) Water Resour Manag , vol.23 , Issue.12 , pp. 2491-2504
    • Akbari, M.1    Afshar, A.2    Sadrabadi, M.R.3
  • 3
    • 84878763355 scopus 로고    scopus 로고
    • Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference system (MANFIS)
    • Akrami SA, Shafie A, Jaafar O (2013) Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference system (MANFIS). Water Resour Manag 27(9): 3507-3523.
    • (2013) Water Resour Manag , vol.27 , Issue.9 , pp. 3507-3523
    • Akrami, S.A.1    Shafie, A.2    Jaafar, O.3
  • 4
    • 79960435554 scopus 로고    scopus 로고
    • Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
    • Anifowose F, Abdulraheem A (2011) Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. J Nat Gas Sci Eng 3(3): 505-517.
    • (2011) J Nat Gas Sci Eng , vol.3 , Issue.3 , pp. 505-517
    • Anifowose, F.1    Abdulraheem, A.2
  • 5
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool
    • Aqil M, Kita I, Yano A, Nishiyama S (2007) Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool. J Environ Manag 85(1): 215-223.
    • (2007) J Environ Manag , vol.85 , Issue.1 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 6
    • 34748878873 scopus 로고    scopus 로고
    • A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales
    • Arrell KE, Fisher PF, Tate NJ, Bastin L (2007) A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales. Comput Geosci 33: 1366-1381.
    • (2007) Comput Geosci , vol.33 , pp. 1366-1381
    • Arrell, K.E.1    Fisher, P.F.2    Tate, N.J.3    Bastin, L.4
  • 7
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology, part I and II
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural network in hydrology, part I and II. J Hydrol Eng 5: 115-137.
    • (2000) J Hydrol Eng , vol.5 , pp. 115-137
  • 8
    • 0027444434 scopus 로고
    • Fuzzy rule-based models for infiltration
    • Bárdossy A, Disse M (1993) Fuzzy rule-based models for infiltration. Water Resour Res 29(2): 373-382.
    • (1993) Water Resour Res , vol.29 , Issue.2 , pp. 373-382
    • Bárdossy, A.1    Disse, M.2
  • 9
    • 17744398493 scopus 로고    scopus 로고
    • Fuzzy rule-based models for infiltration hybrid method for porosity classification in carbonate formations
    • Batyrshin I, Sheremetov L, Markov M, Panova A (2005) Fuzzy rule-based models for infiltration hybrid method for porosity classification in carbonate formations. J Pet Sci Eng 47: 35-50.
    • (2005) J Pet Sci Eng , vol.47 , pp. 35-50
    • Batyrshin, I.1    Sheremetov, L.2    Markov, M.3    Panova, A.4
  • 10
    • 59049088362 scopus 로고    scopus 로고
    • Improved irrigation water demand forecasting using a soft-computing hybrid model
    • Calvo PI, Estrada GJC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst Eng 102(2): 202-218.
    • (2009) Biosyst Eng , vol.102 , Issue.2 , pp. 202-218
    • Calvo, P.I.1    Estrada, G.J.C.2
  • 11
    • 33644883318 scopus 로고    scopus 로고
    • A committee machine with empirical formulas for permeability prediction
    • Chen CH, Lin ZS (2006) A committee machine with empirical formulas for permeability prediction. Comput Geosci 32: 485-496.
    • (2006) Comput Geosci , vol.32 , pp. 485-496
    • Chen, C.H.1    Lin, Z.S.2
  • 12
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2: 267-278.
    • (1994) J Intell Fuzzy Syst , vol.2 , pp. 267-278
    • Chiu, S.1
  • 13
    • 60849119255 scopus 로고    scopus 로고
    • Application of optimal control and fuzzy theory for dynamic groundwater remediation design
    • Chu HJ, Chang LC (2009) Application of optimal control and fuzzy theory for dynamic groundwater remediation design. Water Resour Manag 23(4): 647-660.
    • (2009) Water Resour Manag , vol.23 , Issue.4 , pp. 647-660
    • Chu, H.J.1    Chang, L.C.2
  • 14
    • 80051671150 scopus 로고    scopus 로고
    • Small catchment agricultural management using decision variables defined at catchment scale and a fuzzy rule-based system: a Mediterranean vineyard case study
    • Colin F, Guillaume S, Tisseyre B (2011) Small catchment agricultural management using decision variables defined at catchment scale and a fuzzy rule-based system: a Mediterranean vineyard case study. Water Resour Manag 25(11): 2649-2668.
    • (2011) Water Resour Manag , vol.25 , Issue.11 , pp. 2649-2668
    • Colin, F.1    Guillaume, S.2    Tisseyre, B.3
  • 15
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309: 229-240.
    • (2005) J Hydrol , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 16
    • 84860424531 scopus 로고    scopus 로고
    • Multiobjective design of groundwater monitoring network under epistemic uncertainty
    • Dhar A, Patil RS (2012) Multiobjective design of groundwater monitoring network under epistemic uncertainty. Water Resour Manag 26(7): 1809-1825.
    • (2012) Water Resour Manag , vol.26 , Issue.7 , pp. 1809-1825
    • Dhar, A.1    Patil, R.S.2
  • 18
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in groundwater
    • Garcia LA, Shigidi A (2006) Using neural networks for parameter estimation in groundwater. J Hydrol 318(1-4): 215-231.
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 215-231
    • Garcia, L.A.1    Shigidi, A.2
  • 19
    • 84872943093 scopus 로고    scopus 로고
    • Application of artificial neural networks and particle swarm optimization for the management of groundwater resources
    • Gaur S, Ch S, Graillot D, Chahar BR, Kumar DN (2013) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resour Manag 27(3): 927-941.
    • (2013) Water Resour Manag , vol.27 , Issue.3 , pp. 927-941
    • Gaur, S.1    Ch, S.2    Graillot, D.3    Chahar, B.R.4    Kumar, D.N.5
  • 21
    • 77950300963 scopus 로고    scopus 로고
    • Hybrid computational models for the characterization of oil and gas reservoirs
    • Helmy T, Fatai A, Faisal K (2010) Hybrid computational models for the characterization of oil and gas reservoirs. Expert Syst Appl 37(7): 5353-5363.
    • (2010) Expert Syst Appl , vol.37 , Issue.7 , pp. 5353-5363
    • Helmy, T.1    Fatai, A.2    Faisal, K.3
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0035254822 scopus 로고    scopus 로고
    • An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs
    • Huang Y, Gedeon TD, Wong PM (2010) An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Eng Appl Artif Intell 14(1): 15-21.
    • (2010) Eng Appl Artif Intell , vol.14 , Issue.1 , pp. 15-21
    • Huang, Y.1    Gedeon, T.D.2    Wong, P.M.3
  • 24
    • 67349152094 scopus 로고    scopus 로고
    • Comparison between neuro-fuzzy and fractal models for permeability prediction
    • Hurtado N, Aldana M, Torres J (2009) Comparison between neuro-fuzzy and fractal models for permeability prediction. Comput Geosci 13: 181-186.
    • (2009) Comput Geosci , vol.13 , pp. 181-186
    • Hurtado, N.1    Aldana, M.2    Torres, J.3
  • 25
    • 84896735931 scopus 로고    scopus 로고
    • A prediction model for the level of well water
    • Inan T, Tayfur G (2012) A prediction model for the level of well water. Sci Res Essays 7(50): 4242-4252.
    • (2012) Sci Res Essays , vol.7 , Issue.50 , pp. 4242-4252
    • Inan, T.1    Tayfur, G.2
  • 26
    • 60549088670 scopus 로고    scopus 로고
    • A committee neural network for prediction of normalized oil content from well log data: An example from south pars gas field, Persian Gulf
    • Kadkhodaie-Ilkhchi A, Rezaee MR, Rahimpour-Bonab H (2009) A committee neural network for prediction of normalized oil content from well log data: An example from south pars gas field, Persian Gulf. J Pet Sci Eng 65: 23-32.
    • (2009) J Pet Sci Eng , vol.65 , pp. 23-32
    • Kadkhodaie-Ilkhchi, A.1    Rezaee, M.R.2    Rahimpour-Bonab, H.3
  • 27
    • 84856957828 scopus 로고    scopus 로고
    • Effective fuzzy c-means clustering algorithms for data clustering problems
    • Kannan SR, Ramathilagam S, Chung PC (2012) Effective fuzzy c-means clustering algorithms for data clustering problems. Expert Syst Appl 39: 6292-6300.
    • (2012) Expert Syst Appl , vol.39 , pp. 6292-6300
    • Kannan, S.R.1    Ramathilagam, S.2    Chung, P.C.3
  • 28
    • 77954817308 scopus 로고    scopus 로고
    • Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the south pars gas field, Persian Gulf Basin
    • Labani MM, Kadkhodaie-Ilkhchi A, Salahshoor K (2010) Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the south pars gas field, Persian Gulf Basin. J Pet Sci Eng 72: 175-185.
    • (2010) J Pet Sci Eng , vol.72 , pp. 175-185
    • Labani, M.M.1    Kadkhodaie-Ilkhchi, A.2    Salahshoor, K.3
  • 30
    • 29544449323 scopus 로고    scopus 로고
    • Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
    • Lim JS (2005) Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. J Pet Sci Eng 49: 182-192.
    • (2005) J Pet Sci Eng , vol.49 , pp. 182-192
    • Lim, J.S.1
  • 31
    • 0036072897 scopus 로고    scopus 로고
    • A neuro-fuzzy based oil/gas producibility estimation method
    • Malki HA, Baldwin J (2002) A neuro-fuzzy based oil/gas producibility estimation method. IEEE Int Jt Conf Neural Netw 1: 896-901.
    • (2002) IEEE Int Jt Conf Neural Netw , vol.1 , pp. 896-901
    • Malki, H.A.1    Baldwin, J.2
  • 32
    • 84963342677 scopus 로고
    • Advances in the linguistic synthesis of fuzzy controllers
    • Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy controllers. Int J Man Mach Stud 8: 669-678.
    • (1976) Int J Man Mach Stud , vol.8 , pp. 669-678
    • Mamdani, E.H.1
  • 33
    • 0017703889 scopus 로고
    • Applications of fuzzy logic to approximate reasoning using linguistic synthesis
    • Mamdani EH (1977) Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comput 26: 1182-1191.
    • (1977) IEEE Trans Comput , vol.26 , pp. 1182-1191
    • Mamdani, E.H.1
  • 34
    • 0016451032 scopus 로고
    • An experimental in linguistic synthesis with a fuzzy logic control
    • Mamdani EH, Assilian S (1975) An experimental in linguistic synthesis with a fuzzy logic control. Int J Man Mach Stud 7: 1-13.
    • (1975) Int J Man Mach Stud , vol.7 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 35
    • 33746893825 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity
    • Merdun H, Inar OC, Meral R, Apan M (2006) Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res 90: 108-116.
    • (2006) Soil Tillage Res , vol.90 , pp. 108-116
    • Merdun, H.1    Inar, O.C.2    Meral, R.3    Apan, M.4
  • 36
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India
    • Mohanty S, Jha MK, Kumar A, Sudheer KP (2010) Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India. Water Resour Manag 24(9): 1845-1865.
    • (2010) Water Resour Manag , vol.24 , Issue.9 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 37
    • 84874285796 scopus 로고    scopus 로고
    • A Wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
    • Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A Wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27(5): 1301-1321.
    • (2013) Water Resour Manag , vol.27 , Issue.5 , pp. 1301-1321
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Behnia, N.4
  • 38
    • 84883050028 scopus 로고    scopus 로고
    • Integrated sustainable irrigation planning with multiobjective fuzzy optimization approach
    • Morankar DV, Raju KS, Kumar DN (2013) Integrated sustainable irrigation planning with multiobjective fuzzy optimization approach. Water Resour Manag 27(11): 3981-4004.
    • (2013) Water Resour Manag , vol.27 , Issue.11 , pp. 3981-4004
    • Morankar, D.V.1    Raju, K.S.2    Kumar, D.N.3
  • 39
    • 79952088726 scopus 로고    scopus 로고
    • Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks
    • Motaghian HR, Mohammadi J (2011) Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks. Pedosphere 21(2): 170-177.
    • (2011) Pedosphere , vol.21 , Issue.2 , pp. 170-177
    • Motaghian, H.R.1    Mohammadi, J.2
  • 40
    • 84860486004 scopus 로고    scopus 로고
    • River suspended sediment prediction using various multilayer perceptron neural network training algorithms-A case study in Malaysia
    • Mustafa MR, Rezaur RB, Saiedi S, Isa MH (2012) River suspended sediment prediction using various multilayer perceptron neural network training algorithms-A case study in Malaysia. Water Resour Manag 26(7): 1879-1897.
    • (2012) Water Resour Manag , vol.26 , Issue.7 , pp. 1879-1897
    • Mustafa, M.R.1    Rezaur, R.B.2    Saiedi, S.3    Isa, M.H.4
  • 43
    • 0001066312 scopus 로고    scopus 로고
    • Optimal ensemble averaging of neural networks
    • Naftaly U, Intrator N, Horn D (1997) Optimal ensemble averaging of neural networks. Comput Neural Syst 8: 283-296.
    • (1997) Comput Neural Syst , vol.8 , pp. 283-296
    • Naftaly, U.1    Intrator, N.2    Horn, D.3
  • 44
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak PC, Rao YRS, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20(1): 77-90.
    • (2006) Water Resour Manag , vol.20 , Issue.1 , pp. 77-90
    • Nayak, P.C.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 46
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V, Asgharimogaddam A, Nadiri AA (2008b) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22: 5054-5066.
    • (2008) Hydrol Process , vol.22 , pp. 5054-5066
    • Nourani, V.1    Asgharimogaddam, A.2    Nadiri, A.A.3
  • 47
    • 78751643180 scopus 로고    scopus 로고
    • Modeling the permeability of carbonate reservoir using type-2 fuzzy logic systems
    • Olatunji SO, Selamat A, Abdulraheem A (2011) Modeling the permeability of carbonate reservoir using type-2 fuzzy logic systems. Comput Ind 62: 147-163.
    • (2011) Comput Ind , vol.62 , pp. 147-163
    • Olatunji, S.O.1    Selamat, A.2    Abdulraheem, A.3
  • 48
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting - Evolutionary computation methods versus the Levenberg-Marquardt approach
    • Piotrowski AP, Napiorkowski JJ (2011) Optimizing neural networks for river flow forecasting - Evolutionary computation methods versus the Levenberg-Marquardt approach. J Hydrol 407: 12-27.
    • (2011) J Hydrol , vol.407 , pp. 12-27
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 49
    • 0034307591 scopus 로고    scopus 로고
    • On the electrical-hydraulic conductivity correlation in aquifers
    • Putvance DT (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36(10): 2905-2913.
    • (2000) Water Resour Res , vol.36 , Issue.10 , pp. 2905-2913
    • Putvance, D.T.1
  • 50
    • 84884948777 scopus 로고    scopus 로고
    • Research Center of Agriculture and Natural Resources of East Azerbaijan Province
    • Research Center of Agriculture and Natural Resources of East Azerbaijan Province (2010) Annual report of water balance of Tasuj plain (in Persian).
    • (2010) Annual report of water balance of Tasuj plain (in Persian)
  • 51
    • 36749026312 scopus 로고    scopus 로고
    • Hydraulic conductivity estimation via fuzzy
    • Ross J, Ozbek M, Pinder GF (2007) Hydraulic conductivity estimation via fuzzy. Math Geol 39(8): 765-780.
    • (2007) Math Geol , vol.39 , Issue.8 , pp. 765-780
    • Ross, J.1    Ozbek, M.2    Pinder, G.F.3
  • 52
    • 84883746458 scopus 로고    scopus 로고
    • Optimal reservoir operation based on conjunctive use of surface water and groundwater using neuro-fuzzy systems
    • Safavi HR, Chakraei I, Samani AK, Golmohammadi MH (2013) Optimal reservoir operation based on conjunctive use of surface water and groundwater using neuro-fuzzy systems. Water Resour Manag 27(12): 4259-4275.
    • (2013) Water Resour Manag , vol.27 , Issue.12 , pp. 4259-4275
    • Safavi, H.R.1    Chakraei, I.2    Samani, A.K.3    Golmohammadi, M.H.4
  • 53
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani N, Gohari-Moghadam M, Safavi AA (2007) A simple neural network model for the determination of aquifer parameters. J Hydrol 340: 1-11.
    • (2007) J Hydrol , vol.340 , pp. 1-11
    • Samani, N.1    Gohari-Moghadam, M.2    Safavi, A.A.3
  • 54
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26(6): 1715-1729.
    • (2012) Water Resour Manag , vol.26 , Issue.6 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 55
    • 0032474481 scopus 로고    scopus 로고
    • Using neural networks to predict soil water retention and soil hydraulic conductivity
    • Schaap MG, Leij FJ (1998) Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res 47: 37-42.
    • (1998) Soil Tillage Res , vol.47 , pp. 37-42
    • Schaap, M.G.1    Leij, F.J.2
  • 56
    • 77958589576 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy approach for sand permeability estimation
    • Sezer A, Göktepe AB, Altun S (2010) Adaptive neuro-fuzzy approach for sand permeability estimation. Environ Eng Manag J 9(2): 231-238.
    • (2010) Environ Eng Manag J , vol.9 , Issue.2 , pp. 231-238
    • Sezer, A.1    Göktepe, A.B.2    Altun, S.3
  • 57
    • 84871721755 scopus 로고    scopus 로고
    • Application of several data-driven techniques for predicting groundwater level
    • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2): 419-432.
    • (2013) Water Resour Manag , vol.27 , Issue.2 , pp. 419-432
    • Shirmohammadi, B.1    Vafakhah, M.2    Moosavi, V.3    Moghaddamnia, A.4
  • 58
    • 79957515465 scopus 로고    scopus 로고
    • Complexity selection of a neural network model for karst flood forecasting: the case of the Lez Basin (southern France)
    • Siou LK, Johannet A, Borrell V, Pistre S (2011) Complexity selection of a neural network model for karst flood forecasting: the case of the Lez Basin (southern France). J Hydrol 403: 367-380.
    • (2011) J Hydrol , vol.403 , pp. 367-380
    • Siou, L.K.1    Johannet, A.2    Borrell, V.3    Pistre, S.4
  • 60
    • 79960702239 scopus 로고    scopus 로고
    • Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network
    • Sulaiman M, Shafie A, Karim O, Basri H (2011) Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour Manag 25(10): 2525-2541.
    • (2011) Water Resour Manag , vol.25 , Issue.10 , pp. 2525-2541
    • Sulaiman, M.1    Shafie, A.2    Karim, O.3    Basri, H.4
  • 61
    • 78751703410 scopus 로고    scopus 로고
    • Determination of three dimensional hydraulic conductivities using a combined analytical/neural network model
    • Sun J, Zhao Z, Zhang Y (2011) Determination of three dimensional hydraulic conductivities using a combined analytical/neural network model. Tunn Undergr Space Technol 26: 310-319.
    • (2011) Tunn Undergr Space Technol , vol.26 , pp. 310-319
    • Sun, J.1    Zhao, Z.2    Zhang, Y.3
  • 62
    • 0021892282 scopus 로고
    • Identification of systems and its applicationto modeling and control
    • Takagi T, Sugeno M (1985) Identification of systems and its applicationto modeling and control. IEEE Trans Syst Man Cybern 15: 116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 63
    • 0030300642 scopus 로고    scopus 로고
    • Testing an artificial neural network for predicting soil hydraulic conductivity
    • Tamari S, Wosten JHM, Ruiz-Suarez JC (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci Soc Am J 60(6): 1732-1741.
    • (1996) Soil Sci Soc Am J , vol.60 , Issue.6 , pp. 1732-1741
    • Tamari, S.1    Wosten, J.H.M.2    Ruiz-Suarez, J.C.3
  • 65
    • 79952716268 scopus 로고    scopus 로고
    • Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods
    • Tayfur G, Singh VP (2011) Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods. Water Resour Manag 25(5): 1253-1267.
    • (2011) Water Resour Manag , vol.25 , Issue.5 , pp. 1253-1267
    • Tayfur, G.1    Singh, V.P.2
  • 66
    • 34447334519 scopus 로고    scopus 로고
    • Predicting and forecasting flow discharge at sites receiving significant lateral inflow
    • Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrol Process 21(14): 1848-1859.
    • (2007) Hydrol Process , vol.21 , Issue.14 , pp. 1848-1859
    • Tayfur, G.1    Moramarco, T.2    Singh, V.P.3
  • 67
    • 54849437518 scopus 로고    scopus 로고
    • Multiple parameterization for hydraulic conductivity identification
    • Tsai FTC, Li X (2008) Multiple parameterization for hydraulic conductivity identification. Groundwater 46(6): 851-864.
    • (2008) Groundwater , vol.46 , Issue.6 , pp. 851-864
    • Tsai, F.T.C.1    Li, X.2
  • 68
    • 77952879990 scopus 로고    scopus 로고
    • Assessment of porosity using spatial correlation-based radial basis function and neuro-fuzzy inference system
    • Tutmez B (2010) Assessment of porosity using spatial correlation-based radial basis function and neuro-fuzzy inference system. Neural Comput Appl 19: 499-505.
    • (2010) Neural Comput Appl , vol.19 , pp. 499-505
    • Tutmez, B.1
  • 69
    • 33947167246 scopus 로고    scopus 로고
    • Spatial estimation model of porosity
    • Tutmez B, Hatipoglu Z (2007) Spatial estimation model of porosity. Comput Geosci 33: 465-475.
    • (2007) Comput Geosci , vol.33 , pp. 465-475
    • Tutmez, B.1    Hatipoglu, Z.2
  • 71
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 72
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M, Teshnehlab M (2008) Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput 8(20): 928-936.
    • (2008) Appl Soft Comput , vol.8 , Issue.20 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.