메뉴 건너뛰기




Volumn 102, Issue 2, 2009, Pages 202-218

Improved irrigation water demand forecasting using a soft-computing hybrid model

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER CIRCUITS; ERROR STATISTICS; FORECASTING; FUZZY INFERENCE; GENETIC ALGORITHMS; IRRIGATION; SOFT COMPUTING; TIME SERIES;

EID: 59049088362     PISSN: 15375110     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biosystemseng.2008.09.032     Document Type: Article
Times cited : (132)

References (97)
  • 1
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart R.J., See L., and Kneale P.E. Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoff model. Journal of Hydroinformatics 1 2 (1999) 103-114
    • (1999) Journal of Hydroinformatics , vol.1 , Issue.2 , pp. 103-114
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., and See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14 (2000) 2157-2172
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments
    • Abrahart R.J., and See L. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrology and Earth System Sciences 6 4 (2002) 655-670
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 4
    • 33746406254 scopus 로고    scopus 로고
    • Simulation of runoff and sediment yield using artificial neural networks
    • Agarwal A., Mishra S.K., Ram S., and Singh J.K. Simulation of runoff and sediment yield using artificial neural networks. Biosystems Engineering 94 4 (2006) 597-613
    • (2006) Biosystems Engineering , vol.94 , Issue.4 , pp. 597-613
    • Agarwal, A.1    Mishra, S.K.2    Ram, S.3    Singh, J.K.4
  • 6
    • 0033116849 scopus 로고    scopus 로고
    • Artificial neural networks as applied to long-term demand forecasting
    • Al-Saba T., and El-Amin I. Artificial neural networks as applied to long-term demand forecasting. Artificial Intelligence in Engineering 13 2 (1999) 189-197
    • (1999) Artificial Intelligence in Engineering , vol.13 , Issue.2 , pp. 189-197
    • Al-Saba, T.1    El-Amin, I.2
  • 7
    • 33847082820 scopus 로고    scopus 로고
    • A short-term, pattern-based model for water-demand forecasting
    • Alvisi S., Franchini M., and Marinelli A. A short-term, pattern-based model for water-demand forecasting. Journal of Hydroinformatics 9 1 (2007) 39-50
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.1 , pp. 39-50
    • Alvisi, S.1    Franchini, M.2    Marinelli, A.3
  • 8
    • 11944267778 scopus 로고    scopus 로고
    • Evaluation of neural network streamflow forecasting on 47 watersheds
    • Anctil F., and Rat A. Evaluation of neural network streamflow forecasting on 47 watersheds. Journal of Hydrologic Engineering 10 1 (2005) 85-88
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.1 , pp. 85-88
    • Anctil, F.1    Rat, A.2
  • 10
    • 38049161718 scopus 로고    scopus 로고
    • Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models
    • Calejo M.J., Lamaddalena N., Teixeira J.L., and Pereira L.S. Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models. Agricultural Water Management 95 (2008) 154-162
    • (2008) Agricultural Water Management , vol.95 , pp. 154-162
    • Calejo, M.J.1    Lamaddalena, N.2    Teixeira, J.L.3    Pereira, L.S.4
  • 11
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron D., Kneale P., and See L. An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrological Processes 16 (2002) 1033-1046
    • (2002) Hydrological Processes , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 12
    • 15444365276 scopus 로고    scopus 로고
    • Fuzzy exemplar-based inference system for flood forecasting
    • 10.1029/2004WR003037
    • Chang L.C., Chang F.J., and Tsai Y.H. Fuzzy exemplar-based inference system for flood forecasting. Water Resources Research 41 (2005) W02005 10.1029/2004WR003037
    • (2005) Water Resources Research , vol.41
    • Chang, L.C.1    Chang, F.J.2    Tsai, Y.H.3
  • 14
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedbackward neural networks for rainfall-runoff modeling
    • Chiang Y.M., Chang L.C., and Chang F.J. Comparison of static-feedforward and dynamic-feedbackward neural networks for rainfall-runoff modeling. Journal of Hydrology 290 (2004) 297-311
    • (2004) Journal of Hydrology , vol.290 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 15
    • 2342471501 scopus 로고
    • Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande
    • Clément R. Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande. Houille Blanche 20 5 (1966) 553-575
    • (1966) Houille Blanche , vol.20 , Issue.5 , pp. 553-575
    • Clément, R.1
  • 20
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M., and Güngör M. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 22 (2008) 2122-2132
    • (2008) Hydrological Processes , vol.22 , pp. 2122-2132
    • Firat, M.1    Güngör, M.2
  • 21
    • 60849104783 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for municipal water consumption modeling
    • 10.1007/s11269-008-9291-3
    • Firat M., Yurdusev M.A., and Turan M.E. Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resources Management (2008) 10.1007/s11269-008-9291-3
    • (2008) Water Resources Management
    • Firat, M.1    Yurdusev, M.A.2    Turan, M.E.3
  • 25
    • 0000008790 scopus 로고    scopus 로고
    • Note on fee lunches and cross-validation
    • Goutte C. Note on fee lunches and cross-validation. Neural Computation 9 (1997) 1211-1215
    • (1997) Neural Computation , vol.9 , pp. 1211-1215
    • Goutte, C.1
  • 26
    • 0348037710 scopus 로고
    • Neural networks for univariate time series forecasting and their application to water demand prediction
    • Griñó R. Neural networks for univariate time series forecasting and their application to water demand prediction. Neural Network World 2 5 (1992) 437-450
    • (1992) Neural Network World , vol.2 , Issue.5 , pp. 437-450
    • Griñó, R.1
  • 27
    • 24944552538 scopus 로고    scopus 로고
    • Remediation system design with multiple uncertain parameters using fuzzy sets and genetic algorithm
    • Guan J., and Aral M.M. Remediation system design with multiple uncertain parameters using fuzzy sets and genetic algorithm. Journal of Hydrologic Engineering 10 5 (2005) 386-394
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.5 , pp. 386-394
    • Guan, J.1    Aral, M.M.2
  • 28
    • 4143070227 scopus 로고    scopus 로고
    • Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
    • Gutiérrez-Estrada J.C., De Pedro-Sanz E., López-Luque R., and Pulido-Calvo I. Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacultural Engineering 31 (2004) 183-203
    • (2004) Aquacultural Engineering , vol.31 , pp. 183-203
    • Gutiérrez-Estrada, J.C.1    De Pedro-Sanz, E.2    López-Luque, R.3    Pulido-Calvo, I.4
  • 29
    • 33845633788 scopus 로고    scopus 로고
    • Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático
    • Gutiérrez-Estrada J.C., De Pedro-Sanz E., López-Luque R., and Pulido-Calvo I. Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático (Water temperature short-term forecasting. Application in aquaculture systems). Ingeniería del Agua 12 1 (2005) 77-92
    • (2005) Ingeniería del Agua , vol.12 , Issue.1 , pp. 77-92
    • Gutiérrez-Estrada, J.C.1    De Pedro-Sanz, E.2    López-Luque, R.3    Pulido-Calvo, I.4
  • 30
    • 34547838136 scopus 로고    scopus 로고
    • Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: non-linear univariate approach
    • Gutiérrez-Estrada J.C., Silva C., Yáñez E., Rodríguez N., and Pulido-Calvo I. Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: non-linear univariate approach. Fisheries Research 86 (2007) 188-200
    • (2007) Fisheries Research , vol.86 , pp. 188-200
    • Gutiérrez-Estrada, J.C.1    Silva, C.2    Yáñez, E.3    Rodríguez, N.4    Pulido-Calvo, I.5
  • 32
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 34
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks
    • Jain A., Varshney A.K., and Joshi U.C. Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resources Management 15 5 (2001) 299-321
    • (2001) Water Resources Management , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 36
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin M.E., Taylan D., and Terzi O. Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal 51 4 (2006) 588-598
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 37
    • 33144467778 scopus 로고    scopus 로고
    • A simulation models to generate the demand hydrographs in large-scale irrigation systems
    • Khadra R., and Lamaddalena N. A simulation models to generate the demand hydrographs in large-scale irrigation systems. Biosystems Engineering 93 3 (2006) 335-346
    • (2006) Biosystems Engineering , vol.93 , Issue.3 , pp. 335-346
    • Khadra, R.1    Lamaddalena, N.2
  • 38
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neurofuzzy computing technique for evapotranspiration estimation
    • Kişi O., and Öztürk O. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering 133 4 (2007) 368-379
    • (2007) Journal of Irrigation and Drainage Engineering , vol.133 , Issue.4 , pp. 368-379
    • Kişi, O.1    Öztürk, O.2
  • 39
    • 0019227948 scopus 로고
    • Real time forecasting with a conceptual hydrological model. 2: Applications and results
    • Kitanidis P.K., and Bras R.L. Real time forecasting with a conceptual hydrological model. 2: Applications and results. Water Resources Research 16 6 (1980) 1034-1044
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 41
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., and Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Review 126 2 (1998) 470-482
    • (1998) Monthly Weather Review , vol.126 , Issue.2 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 42
    • 33845305755 scopus 로고    scopus 로고
    • On-farm sprinkler irrigation performance as affected by the distribution system
    • Lamaddalena N., Fratino U., and Daccache A. On-farm sprinkler irrigation performance as affected by the distribution system. Biosystems Engineering 96 1 (2007) 99-109
    • (2007) Biosystems Engineering , vol.96 , Issue.1 , pp. 99-109
    • Lamaddalena, N.1    Fratino, U.2    Daccache, A.3
  • 44
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe Jr. G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35 1 (1999) 233-241
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 46
    • 0002387774 scopus 로고    scopus 로고
    • Input variable identification-fuzzy curves and fuzzy surfaces
    • Lin Y., Cunningham G.A., and Coggeshall S.V. Input variable identification-fuzzy curves and fuzzy surfaces. Fuzzy Sets and Systems 82 (1996) 65-71
    • (1996) Fuzzy Sets and Systems , vol.82 , pp. 65-71
    • Lin, Y.1    Cunningham, G.A.2    Coggeshall, S.V.3
  • 47
    • 2942556556 scopus 로고    scopus 로고
    • Evaluating irrigation performance in a Mediterranean environment. I: Model and general assessment of an irrigation scheme
    • Lorite I.J., Mateos L., and Fereres E. Evaluating irrigation performance in a Mediterranean environment. I: Model and general assessment of an irrigation scheme. Irrigation Science 23 (2004) 77-84
    • (2004) Irrigation Science , vol.23 , pp. 77-84
    • Lorite, I.J.1    Mateos, L.2    Fereres, E.3
  • 48
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • Lorrai M., and Sechi G.M. Neural nets for modelling rainfall-runoff transformations. Water Resources Management 9 (1995) 299-313
    • (1995) Water Resources Management , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 50
    • 17144381738 scopus 로고    scopus 로고
    • Benchmarking performance in the irrigation and drainage sector: a tool for change
    • Malano H., Burton M., and Makin I. Benchmarking performance in the irrigation and drainage sector: a tool for change. Irrigation and Drainage 53 (2004) 119-133
    • (2004) Irrigation and Drainage , vol.53 , pp. 119-133
    • Malano, H.1    Burton, M.2    Makin, I.3
  • 51
    • 2642570244 scopus 로고    scopus 로고
    • Fuzzy prediction of the algal blooms in the Orbetello lagoon
    • Marsili-Libelli S. Fuzzy prediction of the algal blooms in the Orbetello lagoon. Environmental Modelling and Software 19 (2004) 799-808
    • (2004) Environmental Modelling and Software , vol.19 , pp. 799-808
    • Marsili-Libelli, S.1
  • 52
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason J.C., Tem'me A., and Price R.K. A neural network model of rainfall-runoff using radial basis functions. Journal of Hydraulic Research 34 4 (1996) 537-548
    • (1996) Journal of Hydraulic Research , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Tem'me, A.2    Price, R.K.3
  • 53
    • 34547848418 scopus 로고
    • Forecasting models: sophisticated or naïve?
    • McLaughlin R.L. Forecasting models: sophisticated or naïve?. Journal of Forecasting 2 3 (1983) 274-276
    • (1983) Journal of Forecasting , vol.2 , Issue.3 , pp. 274-276
    • McLaughlin, R.L.1
  • 54
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295 (2004) 246-262
    • (2004) Journal of Hydrology , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 56
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. I: A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. I: A discussion of principles. Journal of Hydrology 10 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 57
    • 33751316466 scopus 로고    scopus 로고
    • Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data
    • Nayebi M., Khalili D., Amin S., and Zand-Parsa S. Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data. Biosystems Engineering 95 4 (2006) 557-567
    • (2006) Biosystems Engineering , vol.95 , Issue.4 , pp. 557-567
    • Nayebi, M.1    Khalili, D.2    Amin, S.3    Zand-Parsa, S.4
  • 58
    • 33845437201 scopus 로고    scopus 로고
    • Reservoir level forecasting using neural networks: lake Naivasha
    • Ondimu S., and Murase H. Reservoir level forecasting using neural networks: lake Naivasha. Biosystems Engineering 96 1 (2007) 135-138
    • (2007) Biosystems Engineering , vol.96 , Issue.1 , pp. 135-138
    • Ondimu, S.1    Murase, H.2
  • 59
    • 0003456980 scopus 로고    scopus 로고
    • United Nations Department for Policy Coordination and Sustainable Development (DPCSD), Commission on Sustainable Development, New York, USA
    • ONU. Comprehensive Assessment of the Freshwater Resources of the World (1997), United Nations Department for Policy Coordination and Sustainable Development (DPCSD), Commission on Sustainable Development, New York, USA
    • (1997) Comprehensive Assessment of the Freshwater Resources of the World
    • ONU1
  • 60
    • 0032168430 scopus 로고    scopus 로고
    • Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis
    • Park H.H. Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis. Fisheries Research 38 (1998) 1-7
    • (1998) Fisheries Research , vol.38 , pp. 1-7
    • Park, H.H.1
  • 61
    • 0001513279 scopus 로고
    • Power consumption in West-Bohemia: improved forecasts with decorrelating connectionist networks
    • Pelikan E., De Groot C., and Wurtz D. Power consumption in West-Bohemia: improved forecasts with decorrelating connectionist networks. Neural Network World 2 (1992) 701-712
    • (1992) Neural Network World , vol.2 , pp. 701-712
    • Pelikan, E.1    De Groot, C.2    Wurtz, D.3
  • 62
    • 0032910521 scopus 로고    scopus 로고
    • Higher performance through combined improvements in irrigation methods and scheduling: a discussion
    • Pereira L.S. Higher performance through combined improvements in irrigation methods and scheduling: a discussion. Agricultural Water Management 40 (1999) 153-169
    • (1999) Agricultural Water Management , vol.40 , pp. 153-169
    • Pereira, L.S.1
  • 63
    • 0012733832 scopus 로고    scopus 로고
    • Stream hydrological and ecological responses to climate change assessed with an artificial neural network
    • Poff L.N., Tokar A.S., and Johnson P.A. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnology and Oceanography 41 5 (1996) 857-863
    • (1996) Limnology and Oceanography , vol.41 , Issue.5 , pp. 857-863
    • Poff, L.N.1    Tokar, A.S.2    Johnson, P.A.3
  • 64
    • 33845614933 scopus 로고    scopus 로고
    • Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola
    • Pulido-Calvo I., Roldán J., López-Luque R., and Gutiérrez-Estrada J.C. Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola (Short-term forecasting techniques of water demand. Application to agricultural use). Ingeniería del Agua 9 3 (2002) 319-331
    • (2002) Ingeniería del Agua , vol.9 , Issue.3 , pp. 319-331
    • Pulido-Calvo, I.1    Roldán, J.2    López-Luque, R.3    Gutiérrez-Estrada, J.C.4
  • 67
    • 34250206968 scopus 로고    scopus 로고
    • Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems
    • Pulido-Calvo I., Montesinos P., Roldán J., and Ruiz-Navarro F. Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Engineering 97 (2007) 283-293
    • (2007) Biosystems Engineering , vol.97 , pp. 283-293
    • Pulido-Calvo, I.1    Montesinos, P.2    Roldán, J.3    Ruiz-Navarro, F.4
  • 68
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I., and Portela M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology 332 (2007) 1-15
    • (2007) Journal of Hydrology , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 70
    • 17144400845 scopus 로고    scopus 로고
    • Application benchmarking and data envelopment analysis (DEA) techniques to irrigation districts in Spain
    • Rodríguez-Díaz J.A., Camacho-Poyato E., and López-Luque R. Application benchmarking and data envelopment analysis (DEA) techniques to irrigation districts in Spain. Irrigation and Drainage 53 (2004) 135-143
    • (2004) Irrigation and Drainage , vol.53 , pp. 135-143
    • Rodríguez-Díaz, J.A.1    Camacho-Poyato, E.2    López-Luque, R.3
  • 71
    • 37349123322 scopus 로고    scopus 로고
    • Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: an application in Spain
    • Rodríguez-Díaz J.A., Camacho-Poyato E., López-Luque R., and Pérez-Urrestarazu L. Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: an application in Spain. Agricultural Systems 96 (2008) 250-259
    • (2008) Agricultural Systems , vol.96 , pp. 250-259
    • Rodríguez-Díaz, J.A.1    Camacho-Poyato, E.2    López-Luque, R.3    Pérez-Urrestarazu, L.4
  • 72
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Roger L.L., and Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research 30 2 (1994) 457-481
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Roger, L.L.1    Dowla, F.U.2
  • 73
    • 28844482264 scopus 로고    scopus 로고
    • Impact of mid-Pacific Ocean thermocline on the prediction of Australian rainfall
    • Ruiz J.E., Cordery I., and Sharma A. Impact of mid-Pacific Ocean thermocline on the prediction of Australian rainfall. Journal of Hydrology 317 (2006) 104-122
    • (2006) Journal of Hydrology , vol.317 , pp. 104-122
    • Ruiz, J.E.1    Cordery, I.2    Sharma, A.3
  • 74
    • 0022471098 scopus 로고
    • "Learning" representations by backpropagation errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. "Learning" representations by backpropagation errors. Nature 323 9 (1986) 533-536
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 75
    • 0035480406 scopus 로고    scopus 로고
    • Multi-model data fusion for hydrological forecasting
    • See L., and Abrahart R.J. Multi-model data fusion for hydrological forecasting. Computers and Geosciences 27 (2001) 987-994
    • (2001) Computers and Geosciences , vol.27 , pp. 987-994
    • See, L.1    Abrahart, R.J.2
  • 76
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44 5 (1999) 763-778
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.5 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 77
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., and Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45 4 (2000) 523-536
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 78
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., and O'Connor K.M. A real-time combination method for the outputs of different rainfall-runoff models. Hydrological Sciences Journal 44 6 (1999) 895-912
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 80
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based on neural networks
    • Shin H.S., and Salas J.D. Regional drought analysis based on neural networks. Journal of Hydrologic Engineering 5 2 (2000) 145-155
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 145-155
    • Shin, H.S.1    Salas, J.D.2
  • 82
    • 0033078453 scopus 로고    scopus 로고
    • Neural-network-based d-step-ahead predictors for nonlinear systems with time delay
    • Tan Y., and Van Cauwenberghe A. Neural-network-based d-step-ahead predictors for nonlinear systems with time delay. Engineering Applications of Artificial Intelligence 12 1 (1999) 21-25
    • (1999) Engineering Applications of Artificial Intelligence , vol.12 , Issue.1 , pp. 21-25
    • Tan, Y.1    Van Cauwenberghe, A.2
  • 83
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., and Deo M.C. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering 3 1 (1998) 26-32
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 85
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4 3 (1999) 232-239
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 86
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., and Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 5 2 (2000) 156-161
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 89
    • 0029306802 scopus 로고
    • Artificial neural networks for estimation of kinetic analytical parameters
    • Ventura S., Silva M., Pérez-Bendito D., and Hervás C. Artificial neural networks for estimation of kinetic analytical parameters. Analytical Chemistry 67 9 (1995) 1521-1525
    • (1995) Analytical Chemistry , vol.67 , Issue.9 , pp. 1521-1525
    • Ventura, S.1    Silva, M.2    Pérez-Bendito, D.3    Hervás, C.4
  • 90
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding II D.K., and Cios K.J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10 (1996) 149-168
    • (1996) Neurocomputing , vol.10 , pp. 149-168
    • Wedding II, D.K.1    Cios, K.J.2
  • 92
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
    • Yapo P.O., Gupta H.V., and Sorooshian S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181 (1996) 23-48
    • (1996) Journal of Hydrology , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 94
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003) 159-175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 95
    • 0343052623 scopus 로고    scopus 로고
    • Rainfall estimation using artificial neural network group
    • Zhang M., Fulcher J., and Scofield R.A. Rainfall estimation using artificial neural network group. Neurocomputing 16 (1997) 97-115
    • (1997) Neurocomputing , vol.16 , pp. 97-115
    • Zhang, M.1    Fulcher, J.2    Scofield, R.A.3
  • 96
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-series forecasting
    • Zhang G.P., Patuwo B.E., and Hu M.Y. A simulation study of artificial neural networks for nonlinear time-series forecasting. Computers and Operations Research 28 4 (2001) 381-396
    • (2001) Computers and Operations Research , vol.28 , Issue.4 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3
  • 97
    • 0036499320 scopus 로고    scopus 로고
    • Forecasting operational demand for an urban water supply zone
    • Zhou S.L., McMahon T.A., Walton A., and Lewis J. Forecasting operational demand for an urban water supply zone. Journal of Hydrology 259 (2002) 189-202
    • (2002) Journal of Hydrology , vol.259 , pp. 189-202
    • Zhou, S.L.1    McMahon, T.A.2    Walton, A.3    Lewis, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.