메뉴 건너뛰기




Volumn 26, Issue 7, 2012, Pages 1879-1897

Erratum to River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms-A Case Study in Malaysia(Water Resour Manage, 10.1007/s11269-012-9992-5);River suspended sediment prediction using various multilayer perceptron neural network training algorithms-A case study in Malaysia

Author keywords

Discharge; Modeling; Multilayer perceptron neural network; Prediction; Suspended sediment; Training algorithms

Indexed keywords

DISCHARGE (FLUID MECHANICS); FORECASTING; MODELS; MULTILAYERS; NEURAL NETWORKS; RIVERS;

EID: 84860486004     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-012-0028-y     Document Type: Erratum
Times cited : (68)

References (49)
  • 1
    • 84855849356 scopus 로고    scopus 로고
    • Forecasting of runoff and sediment yield using Artificial Neural Networks
    • Agarwal A, Rai RK, Upadhyay A (2009) Forecasting of runoff and sediment yield using Artificial Neural Networks. J Water Resour Prot 1:368-375
    • (2009) J Water Resour Prot , vol.1 , pp. 368-375
    • Agarwal, A.1    Rai, R.K.2    Upadhyay, A.3
  • 2
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydro-meteorological data
    • Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydro-meteorological data. Environ Modell Softw 22(1):2-13
    • (2007) Environ Modell Softw , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 3
    • 77955276945 scopus 로고    scopus 로고
    • Rainfall-runoff modeling: Comparison of two approaches with different data requirements
    • Bhadra A, Bandyopadhyay A, Singh R, Raghuwanshi N (2010) Rainfall-runoff modeling: comparison of two approaches with different data requirements. Water Resour Manag 24:37-62
    • (2010) Water Resour Manag , vol.24 , pp. 37-62
    • Bhadra, A.1    Bandyopadhyay, A.2    Singh, R.3    Raghuwanshi, N.4
  • 5
    • 0002918396 scopus 로고
    • Neural Networks Primer, Part I
    • Caudill M (1987) Neural Networks Primer, Part I. AI Expert 2(12):46-52, December 1987
    • (1987) AI Expert , vol.2 , Issue.12 , pp. 46-52
    • Caudill, M.1
  • 6
    • 77955053121 scopus 로고    scopus 로고
    • Modelling watershed scale soil loss prediction and sediment yield estimation
    • Chou W-C (2010) Modelling watershed scale soil loss prediction and sediment yield estimation. Water Resour Manag 24:2075-2090
    • (2010) Water Resour Manag , vol.24 , pp. 2075-2090
    • Chou, W.-C.1
  • 7
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27(2):185-195
    • (2004) Adv Water Resour , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 8
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglu HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37(2):63-68
    • (2006) Adv Eng Softw , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 9
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu KH, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317(3-4):221-238
    • (2006) J Hydrol , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, K.H.1    Kisi, O.2
  • 11
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson CW, Harpham C, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrol Earth Syst Sci 6(4):619-626
    • (2002) Hydrol Earth Syst Sci , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 12
    • 0001525213 scopus 로고
    • A steepest descent method for oscillatory Riemann-Hilbert problems Asymptotics for the MKdV equation
    • Deift P, Zhou X (1993) A steepest descent method for oscillatory Riemann-Hilbert problems Asymptotics for the MKdV equation. Ann Math 137(2):295-368
    • (1993) Ann Math , vol.137 , Issue.2 , pp. 295-368
    • Deift, P.1    Zhou, X.2
  • 13
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana Basin, Portugal
    • Demirel MC, Anabela V, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana Basin, Portugal. Adv Eng Softw 40:467-473
    • (2009) Adv Eng Softw , vol.40 , pp. 467-473
    • Demirel, M.C.1    Anabela, V.2    Kahya, E.3
  • 15
    • 79952700587 scopus 로고    scopus 로고
    • Application of ANN-based stream flow forecasting model for agricultural water management in the Awash River Basin, Ethiopia
    • Edossa D, Babel M (2011) Application of ANN-based stream flow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resour Manag 25:1759-1773
    • (2011) Water Resour Manag , vol.25 , pp. 1759-1773
    • Edossa, D.1    Babel, M.2
  • 16
    • 79951556833 scopus 로고    scopus 로고
    • Long-term runoff modeling using rainfall forecasts with application to the Iguaçu River Basin
    • Evsukoff A, Lima B, Ebecken N (2011) Long-term runoff modeling using rainfall forecasts with application to the Iguaçu River Basin. Water Resour Manag 25:963-985
    • (2011) Water Resour Manag , vol.25 , pp. 963-985
    • Evsukoff, A.1    Lima, B.2    Ebecken, N.3
  • 17
    • 60649110244 scopus 로고    scopus 로고
    • Investigation of internal functioning of the radial basis function neural network river flow forecasting models
    • Fernando DAK, Shamseldin A (2009) Investigation of internal functioning of the radial basis function neural network river flow forecasting models. J Hydrol Eng ASCE 14(3):286-292
    • (2009) J Hydrol Eng ASCE , vol.14 , Issue.3 , pp. 286-292
    • Fernando, D.A.K.1    Shamseldin, A.2
  • 18
    • 78751569704 scopus 로고    scopus 로고
    • Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming
    • Guven A, Kişi Ö (2011) Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resour Manag 25:691-704
    • (2011) Water Resour Manag , vol.25 , pp. 691-704
    • Guven, A.1    Kişi, O.2
  • 19
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989-993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 20
    • 0032030147 scopus 로고    scopus 로고
    • Use of radial basis function type artificial neural network for runoff simulation
    • Jayawardena AW, Fernando DAK (1998) Use of radial basis function type artificial neural network for runoff simulation. Comput Aided Civ Infrastruct Eng 3(2):91-99
    • (1998) Comput Aided Civ Infrastruct Eng , vol.3 , Issue.2 , pp. 91-99
    • Jayawardena, A.W.1    Fernando, D.A.K.2
  • 21
    • 69249091837 scopus 로고    scopus 로고
    • Reservoir sedimentation estimation using artificial neural network
    • Jothiprakash V, Garg V (2009) Reservoir sedimentation estimation using artificial neural network. J Hydrol Eng 14(9):1035-1040
    • (2009) J Hydrol Eng , vol.14 , Issue.9 , pp. 1035-1040
    • Jothiprakash, V.1    Garg, V.2
  • 22
    • 72449178709 scopus 로고    scopus 로고
    • Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model
    • Ju Q, Yu Z, Hao Z, Ou G, Zhao J, Liu D (2009) Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing 72:2873-2883
    • (2009) Neurocomputing , vol.72 , pp. 2873-2883
    • Ju, Q.1    Yu, Z.2    Hao, Z.3    Ou, G.4    Zhao, J.5    Liu, D.6
  • 23
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50(4):693-696
    • (2005) Hydrol Sci J , vol.5 , Issue.4 , pp. 693-696
    • Kisi, O.1
  • 24
    • 48549096154 scopus 로고    scopus 로고
    • Constructing neural network sediment estimation models using a data-driven algorithm
    • Kisi O (2008) Constructing neural network sediment estimation models using a data-driven algorithm. Math Comput Simulat 79(1):94-103
    • (2008) Math Comput Simulat , vol.79 , Issue.1 , pp. 94-103
    • Kisi, O.1
  • 25
    • 60849126964 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy computing technique for suspended sediment estimation
    • Kisi O, Haktanir T (2009) Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Adv Eng Softw 40(6):438-444
    • (2009) Adv Eng Softw , vol.40 , Issue.6 , pp. 438-444
    • Kisi, O.1    Haktanir, T.2
  • 26
    • 84860435941 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • Kisi O, Nia A, Gosheh M, Tajabadi M, Ahmadi A (2011) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manag 1-18
    • (2011) Water Resour Manag , pp. 1-18
    • Kisi, O.1    Nia, A.2    Gosheh, M.3    Tajabadi, M.4    Ahmadi, A.5
  • 27
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P, Byole DP, Base F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89-97
    • (2005) Adv Geosci , vol.5 , pp. 89-97
    • Krause, P.1    Byole, D.P.2    Base, F.3
  • 28
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15:101-124
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 29
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resources variables in river systems: Current status and future directions
    • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resources variables in river systems: Current status and future directions. Environ Model Softw 25:891-909
    • (2010) Environ Model Softw , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 30
    • 53149113747 scopus 로고    scopus 로고
    • Prediction of urban storm water quality using artificial neural networks
    • May DB, Sivakumar M (2009) Prediction of urban storm water quality using artificial neural networks. Environ Model Softw 24:296-302
    • (2009) Environ Model Softw , vol.24 , pp. 296-302
    • May, D.B.1    Sivakumar, M.2
  • 31
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: An artificial neural network approach
    • Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: an artificial neural network approach. Agric Water Manag 98(5):855-866
    • (2011) Agric Water Manag , vol.98 , Issue.5 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.2    McClain, M.E.3    Wang, X.4    Lim, Y.H.5
  • 32
    • 34548179035 scopus 로고    scopus 로고
    • Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973-1995)
    • Mohamed A, Ouillon S (2007) Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973-1995). J Hydrol 343(3-4):187-202
    • (2007) J Hydrol , vol.343 , Issue.3-4 , pp. 187-202
    • Mohamed, A.1    Ouillon, S.2
  • 33
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525-533
    • (1993) Neural Netw , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 34
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • Nagy HM, Watanabe K, Hirano M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. J Hydraul Eng 128(6):588-595
    • (2002) J Hydraul Eng , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 35
    • 33746821810 scopus 로고    scopus 로고
    • Artificial neural networks and high and low flows in various climate regimes
    • Panagoulia D (2006) Artificial neural networks and high and low flows in various climate regimes. Hydrol Sci J 51(4):563-587
    • (2006) Hydrol Sci J , vol.51 , Issue.4 , pp. 563-587
    • Panagoulia, D.1
  • 36
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12:145-151
    • (1999) Neural Netw , vol.12 , pp. 145-151
    • Qian, N.1
  • 37
    • 35348888439 scopus 로고    scopus 로고
    • The effects of sediment-laden waters on irrigated lands along the lower Yellow River in China
    • Qin M, Richard HJ, Yuan Z, Mark WJ, Bo S (2007) The effects of sediment-laden waters on irrigated lands along the lower Yellow River in China. J Environ Manag 85(4):858-865
    • (2007) J Environ Manag , vol.85 , Issue.4 , pp. 858-865
    • Qin, M.1    Richard, H.J.2    Yuan, Z.3    Mark, W.J.4    Bo, S.5
  • 40
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall runoff modeling
    • Samseldin AY (1997) Application of neural network technique to rainfall runoff modeling. J Hydrol 199:272-294
    • (1997) J Hydrol , vol.199 , pp. 272-294
    • Samseldin, A.Y.1
  • 43
    • 33645829512 scopus 로고    scopus 로고
    • Multiple linear regression model for total bed material load prediction
    • Sinnakaudan SK, Ab Ghani A, Ahmad MSS, Zakaria NA (2006) Multiple linear regression model for total bed material load prediction. J Hydraul Eng 132(5):521-528
    • (2006) J Hydraul Eng , vol.132 , Issue.5 , pp. 521-528
    • Sinnakaudan, S.K.1    Ab Ghani, A.2    Ahmad, M.S.S.3    Zakaria, N.A.4
  • 44
    • 0029416249 scopus 로고
    • Neural network models of rainfall runoff process
    • Smith J, Eli RN (1995) Neural network models of rainfall runoff process. J Water Resour Plan Manag ASCE 121(6):499-580
    • (1995) J Water Resour Plan Manag ASCE , vol.1 , Issue.6 , pp. 499-580
    • Smith, J.1    Eli, R.N.2
  • 46
    • 0031180223 scopus 로고    scopus 로고
    • Hysteresis sensitive Neural Network for modeling rating curves
    • Tawfik M, Ibharim A, Fahmy H (1997) Hysteresis sensitive Neural Network for modeling rating curves. J Comput Civil Eng ASCE 11(3):206-211
    • (1997) J Comput Civil Eng ASCE , vol.11 , Issue.3 , pp. 206-211
    • Tawfik, M.1    Ibharim, A.2    Fahmy, H.3
  • 47
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport/Application des réseaux de neurons artificiels pour le transport sédimentaire en nappe
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport/Application des réseaux de neurons artificiels pour le transport sédimentaire en nappe. Hydrol Sci J 47(6):879-892
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 49
    • 33846274953 scopus 로고    scopus 로고
    • Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China
    • Zhu YM, Lu XX, Zhou Y (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84:111-125
    • (2007) Geomorphology , vol.84 , pp. 111-125
    • Zhu, Y.M.1    Lu, X.X.2    Zhou, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.