메뉴 건너뛰기




Volumn 39, Issue 5, 2013, Pages 494-501

Combined indices for ICA and their applications to multivariate process fault diagnosis

Author keywords

Combined index; Fault diagnosis; Independent component analysis; Multivariate process

Indexed keywords

COMBINED INDICES; INDEPENDENT COMPONENT ANALYSIS(ICA); MONITORING AND DIAGNOSIS; MULTIVARIATE PROCESS; NUMERICAL EXAMPLE; PHYSICAL MEANINGS; SIMULATION TESTS; WEIGHTED SUM;

EID: 84879146242     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2013.00494     Document Type: Article
Times cited : (29)

References (24)
  • 2
    • 77954376366 scopus 로고    scopus 로고
    • Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process
    • Liu Qiang, Chai Tian-You, Qin Si-Zhao, Zhao Li-Jie. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process. Control and Decision, 2010, 25(6): 801-807, 813
    • (2010) Control and Decision , vol.25 , Issue.6
    • Liu, Q.1    Chai, T.-Y.2    Qin, S.-Z.3    Zhao, L.-J.4
  • 3
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin S J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480-502
    • (2003) Journal of Chemometrics , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 4
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial and Engineering Chemistry Research, 2010, 49(17): 7849-7857
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , Issue.17 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 5
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z Q, Yang C J, Song Z H. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science, 2009, 64(9): 2245-2255
    • (2009) Chemical Engineering Science , vol.64 , Issue.9 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 7
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D, McAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering, 1996, 20(1): 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 8
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • Cheng C Y, Hsu C C, Chen M C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes. Industrial and Engineering Chemistry Research, 2010, 49(5): 2254-2262
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , Issue.5 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 9
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M, Yue H H, Qin S J, Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Computers and Chemical Engineering, 2002, 26(9): 1281-1293
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 10
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and nonlinear principal components analysis for process monitoring
    • Shao R, Jia F, Martin E B, Morris A J. Wavelets and nonlinear principal components analysis for process monitoring. Control Engineering Practice, 1999, 7(7): 865-879
    • (1999) Control Engineering Practice , vol.7 , Issue.7 , pp. 865-879
    • Shao, R.1    Jia, F.2    Martin, E.B.3    Morris, A.J.4
  • 11
    • 36749028738 scopus 로고    scopus 로고
    • Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
    • Yao Y, Gao F R. Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA). Industrial and Engineering Chemistry Research, 2007, 46(24): 8033-8043
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , Issue.24 , pp. 8033-8043
    • Yao, Y.1    Gao, F.R.2
  • 12
    • 78049311275 scopus 로고    scopus 로고
    • Research on multistage-based MPCA modeling and monitoring method for batch processes
    • Chang Yu-Qing, Wang Shu, Tan Shuai, Wang Fu-Li, Yang Jie. Research on multistage-based MPCA modeling and monitoring method for batch processes. Acta Automatica Sinica, 2010, 36(9): 1312-1320
    • (2010) Acta Automatica Sinica , vol.36 , Issue.9 , pp. 1312-1320
    • Chang, Y.-Q.1    Wang, S.2    Tan, S.3    Wang, F.-L.4    Yang, J.5
  • 13
    • 78650021718 scopus 로고    scopus 로고
    • Fault detection of multi-mode process using segmented PCA based on differential transform
    • Tan Shuai, Wang Fu-Li, Chang Yu-Qing, Wang Shu, Zhou He. Fault detection of multi-mode process using segmented PCA based on differential transform. Acta Automatica Sinica, 2010, 36(11): 1626-1635
    • (2010) Acta Automatica Sinica , vol.36 , Issue.11 , pp. 1626-1635
    • Tan, S.1    Wang, F.-L.2    Chang, Y.-Q.3    Wang, S.4    Zhou, H.5
  • 14
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multi-block and hierarchical PCA and PLS models
    • Westerhuis J A, Kourti T, Macgregor J F. Analysis of multi-block and hierarchical PCA and PLS models. Journal of Chemometrics, 1998, 12(5): 301-321
    • (1998) Journal of Chemometrics , vol.12 , Issue.5 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 15
    • 77952682127 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis
    • Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 593-597
    • (2010) Acta Automatica Sinica , vol.36 , Issue.4 , pp. 593-597
    • Zhang, Y.W.1    Zhou, H.2    Qin, S.J.3
  • 16
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13(4-5): 411-430
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 17
    • 0141496923 scopus 로고    scopus 로고
    • Independent component analysis: A survey
    • Yang Zhu-Qing, Li Yong, Hu De-Wen. Independent component analysis: a survey. Acta Automatica Sinica, 2002, 28(5): 762-772
    • (2002) Acta Automatica Sinica , vol.28 , Issue.5 , pp. 762-772
    • Yang, Z.-Q.1    Li, Y.2    Hu, D.-W.3
  • 18
    • 49149092020 scopus 로고    scopus 로고
    • Batch process monitoring based on multilevel ICA-PCA
    • Ge Z Q, Song Z H. Batch process monitoring based on multilevel ICA-PCA. Journal of Zhejiang University Science A, 2008, 9(8): 1061-1069
    • (2008) Journal of Zhejiang University Science A , vol.9 , Issue.8 , pp. 1061-1069
    • Ge, Z.Q.1    Song, Z.H.2
  • 19
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
    • Zhang Y W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM). Industrial and Engineering Chemistry Research, 2008, 47(18): 6961-6971
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.18 , pp. 6961-6971
    • Zhang, Y.W.1
  • 20
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004, 14(5): 467-485
    • (2004) Journal of Process Control , vol.14 , Issue.5 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 21
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research, 2001, 40(20): 4403-4414
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 22
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E B, Morris A J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control, 1996, 6(6): 349-358
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.