메뉴 건너뛰기




Volumn 113, Issue 3, 2014, Pages 767-780

Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface

Author keywords

Brain computer interface (BCI); Cross correlation; Electroencephalogram (EEG); Feature extraction; Logistic regression; Motor imagery

Indexed keywords

FEATURE EXTRACTION;

EID: 84894262577     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.12.020     Document Type: Article
Times cited : (69)

References (58)
  • 1
    • 77953131563 scopus 로고    scopus 로고
    • A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data
    • Kayikcioglu T., Aydemir O. A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognition Letters 2010, 31:1207-1215.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 1207-1215
    • Kayikcioglu, T.1    Aydemir, O.2
  • 5
    • 74049086820 scopus 로고    scopus 로고
    • A new discriminative common spatial pattern method for motor imagery brain-computer interfaces
    • Thomas K.P., Guan C., Lau C.T., Vinod A.P., Ang K.K. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Transactions on Biomedical Engineering 2009, 56(11):2730-2733.
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.11 , pp. 2730-2733
    • Thomas, K.P.1    Guan, C.2    Lau, C.T.3    Vinod, A.P.4    Ang, K.K.5
  • 7
    • 0032168758 scopus 로고    scopus 로고
    • Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters
    • Pfurtscheller G., Neuper C., Schlogl A., Lugger K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Transactions on Rehabilitation Engineering 1998, 6:316-325.
    • (1998) IEEE Transactions on Rehabilitation Engineering , vol.6 , pp. 316-325
    • Pfurtscheller, G.1    Neuper, C.2    Schlogl, A.3    Lugger, K.4
  • 10
    • 0019727297 scopus 로고
    • Autoregressive estimation of short segment spectra for computerized EEG analysis
    • Jansen B.H., Bourne J.R., Ward J.W. Autoregressive estimation of short segment spectra for computerized EEG analysis. IEEE Transactions on Biomedical Engineering 1981, 28(9):630-637.
    • (1981) IEEE Transactions on Biomedical Engineering , vol.28 , Issue.9 , pp. 630-637
    • Jansen, B.H.1    Bourne, J.R.2    Ward, J.W.3
  • 11
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Gunes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation 2007, 187:1017-1026.
    • (2007) Applied Mathematics and Computation , vol.187 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 12
    • 2442639086 scopus 로고    scopus 로고
    • BCI competition 2003 - data set IIa: spatial patterns of self-controlled brain rhythm modulations
    • Blanchard G., Blankertz B. BCI competition 2003 - data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering 2004, 51:1062-1066.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , pp. 1062-1066
    • Blanchard, G.1    Blankertz, B.2
  • 14
  • 15
    • 28444442730 scopus 로고    scopus 로고
    • A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications
    • Qin L., He B. A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. Journal of Neural Engineering 2005, 2:65-72.
    • (2005) Journal of Neural Engineering , vol.2 , pp. 65-72
    • Qin, L.1    He, B.2
  • 16
    • 43749102069 scopus 로고    scopus 로고
    • EEG feature extraction based on wavelet packet decomposition for brain-computer interface
    • Ting W., Guo-Zheng Y., Bang-Hua Y., Hong S. EEG feature extraction based on wavelet packet decomposition for brain-computer interface. Measurement 2008, 41:618-625.
    • (2008) Measurement , vol.41 , pp. 618-625
    • Ting, W.1    Guo-Zheng, Y.2    Bang-Hua, Y.3    Hong, S.4
  • 17
    • 84880039753 scopus 로고    scopus 로고
    • A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems
    • Liao K., Zhu M., Ding L. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems. Computer Methods and Programs in Biomedicine 2013, 111:376-388.
    • (2013) Computer Methods and Programs in Biomedicine , vol.111 , pp. 376-388
    • Liao, K.1    Zhu, M.2    Ding, L.3
  • 19
    • 84885614676 scopus 로고    scopus 로고
    • Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations
    • Park S.A., Hwang H.J., Lim J.H., Choi J.H., Jung H.K., Im C.H. Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Medical and Biological Engineering and Computing 2013, 51:571-579.
    • (2013) Medical and Biological Engineering and Computing , vol.51 , pp. 571-579
    • Park, S.A.1    Hwang, H.J.2    Lim, J.H.3    Choi, J.H.4    Jung, H.K.5    Im, C.H.6
  • 22
    • 33947085688 scopus 로고
    • Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: use of correlation in determination of rhodium by atomic fluorescence
    • Hieftje G.M., Bystroff R.I., Lim R. Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: use of correlation in determination of rhodium by atomic fluorescence. Analytical Chemistry 1973, 45:253-258.
    • (1973) Analytical Chemistry , vol.45 , pp. 253-258
    • Hieftje, G.M.1    Bystroff, R.I.2    Lim, R.3
  • 23
    • 67649105233 scopus 로고    scopus 로고
    • An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification
    • Dutta S., Chatterjee A., Munshi S. An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification. Expert Systems 2009, 26:202-217.
    • (2009) Expert Systems , vol.26 , pp. 202-217
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 25
    • 84885418140 scopus 로고    scopus 로고
    • Automatic classification of sleep stages based on the time-frequency image of EEG signals
    • Bajaj V., Pachori R.B. Automatic classification of sleep stages based on the time-frequency image of EEG signals. Computer Methods and Programs in Biomedicine 2013, 112:320-328.
    • (2013) Computer Methods and Programs in Biomedicine , vol.112 , pp. 320-328
    • Bajaj, V.1    Pachori, R.B.2
  • 26
    • 8844271035 scopus 로고    scopus 로고
    • Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns
    • Wang T., Deng J., He B. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clinical Neurophysiology 2004, 115:2744-2753.
    • (2004) Clinical Neurophysiology , vol.115 , pp. 2744-2753
    • Wang, T.1    Deng, J.2    He, B.3
  • 27
    • 2442690499 scopus 로고    scopus 로고
    • BCI competition 2003 - dataset IV: an algorithm based on CSSD and FDA for classifying single-trial EEG
    • Wang Y., Zang Z., Li Y., Gao S., Yang F. BCI competition 2003 - dataset IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Transactions on Biomedical Engineering 2004, 51:1081-1086.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , pp. 1081-1086
    • Wang, Y.1    Zang, Z.2    Li, Y.3    Gao, S.4    Yang, F.5
  • 29
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong H.J., Sundararajan N., Huang G.B., Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets and Systems 2006, 157:1260-1275.
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 30
    • 84874239884 scopus 로고    scopus 로고
    • Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
    • Hosseinifarda B., Moradia M.H., Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Computer Methods and Programs in Biomedicine 2013, 109:339-345.
    • (2013) Computer Methods and Programs in Biomedicine , vol.109 , pp. 339-345
    • Hosseinifarda, B.1    Moradia, M.H.2    Rostami, R.3
  • 31
    • 33646561586 scopus 로고    scopus 로고
    • Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks
    • Pfurtscheller G., Brunner C., Schlogl A., da Silva F.H.L. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31:153-159.
    • (2006) Neuroimage , vol.31 , pp. 153-159
    • Pfurtscheller, G.1    Brunner, C.2    Schlogl, A.3    da Silva, F.H.L.4
  • 34
    • 78449259555 scopus 로고    scopus 로고
    • Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification
    • Dutta S., Chatterjee A., Munshi S. Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification. Medical Engineering and Physics 2010, 32:1161-1169.
    • (2010) Medical Engineering and Physics , vol.32 , pp. 1161-1169
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 35
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EEG signals
    • Chandaka S., A.Chatterjee A., Munshi S. Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert System with Applications 2009, 36:1329-1336.
    • (2009) Expert System with Applications , vol.36 , pp. 1329-1336
    • Chandaka, S.1    A.Chatterjee, A.2    Munshi, S.3
  • 36
    • 61549105958 scopus 로고    scopus 로고
    • Support vector machines employing cross-correlation for emotional speech recognition
    • Chandaka S., Chatterjee A., Munshi S. Support vector machines employing cross-correlation for emotional speech recognition. Measurement 2009, 42:611-618.
    • (2009) Measurement , vol.42 , pp. 611-618
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 38
    • 13144292419 scopus 로고    scopus 로고
    • Multi-component based cross correlation beat detection in electrocardiogram analysis
    • Last T., Nugent C.D., Owens F.J. Multi-component based cross correlation beat detection in electrocardiogram analysis. BioMedical Engineering OnLine 2004, 3(26). 10.1186/1475-925X-3-26.
    • (2004) BioMedical Engineering OnLine , vol.3 , Issue.26
    • Last, T.1    Nugent, C.D.2    Owens, F.J.3
  • 39
    • 82955192361 scopus 로고    scopus 로고
    • Cyclogram and cross correlation: a comparative study to quantify gait coordination in mental state
    • Joshi D., Anand S. Cyclogram and cross correlation: a comparative study to quantify gait coordination in mental state. Journal of Biomedical Science and Engineering 2010, 3:322-326.
    • (2010) Journal of Biomedical Science and Engineering , vol.3 , pp. 322-326
    • Joshi, D.1    Anand, S.2
  • 41
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasi A., Ercelebi E. Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 2005, 78:87-99.
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 43
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • Caesarendra W., Widodo A., Yang B.S. Application of relevance vector machine and logistic regression for machine degradation assessment. Mechanical Systems and Signal Processing 2010, 24:1161-1171.
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 44
    • 77951626554 scopus 로고    scopus 로고
    • Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy and electromyography
    • Article ID 785279
    • Sander T.H., Leistner S., Wabnitz H., Mackert B.M., Macdonald R., Trahms L. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy and electromyography. Computational Intelligence and Neuroscience 2010, 2010:8. Article ID 785279. 10.1155/2010/785279.
    • (2010) Computational Intelligence and Neuroscience , vol.2010 , pp. 8
    • Sander, T.H.1    Leistner, S.2    Wabnitz, H.3    Mackert, B.M.4    Macdonald, R.5    Trahms, L.6
  • 46
    • 0000147667 scopus 로고
    • Report of the committee on methods of clinical examination in electroencephalography: the ten-twenty electrode system of the International Federation Electroencephalography
    • Jasper H.H. Report of the committee on methods of clinical examination in electroencephalography: the ten-twenty electrode system of the International Federation Electroencephalography. Clinical Neurophysiology 1958, 10(2):371-375.
    • (1958) Clinical Neurophysiology , vol.10 , Issue.2 , pp. 371-375
    • Jasper, H.H.1
  • 48
    • 84860259505 scopus 로고    scopus 로고
    • EEG signal classification based on simple random sampling technique with least square support vector machines
    • Siuly, Li Y., Wen P. EEG signal classification based on simple random sampling technique with least square support vector machines. International Journal of Biomedical Engineering and Technology 2010, 7(4):390-409.
    • (2010) International Journal of Biomedical Engineering and Technology , vol.7 , Issue.4 , pp. 390-409
    • Siuly1    Li, Y.2    Wen, P.3
  • 49
    • 69049087866 scopus 로고    scopus 로고
    • Classification of EEG signals using sampling techniques and least square support vector machines
    • Siuly, Li Y., Wen P. Classification of EEG signals using sampling techniques and least square support vector machines. Rough Sets and Knowledge Technology Lecture Notes in Computer Science 2009, 5589:375-382.
    • (2009) Rough Sets and Knowledge Technology Lecture Notes in Computer Science , vol.5589 , pp. 375-382
    • Siuly1    Li, Y.2    Wen, P.3
  • 50
    • 84868532997 scopus 로고    scopus 로고
    • Dynamic, location-based channel selection for power consumption reduction in EEG analysis
    • Faul S., Marnane W. Dynamic, location-based channel selection for power consumption reduction in EEG analysis. Computer Methods and Programs in Biomedicine 2012, 108:1206-1215.
    • (2012) Computer Methods and Programs in Biomedicine , vol.108 , pp. 1206-1215
    • Faul, S.1    Marnane, W.2
  • 51
    • 58349104329 scopus 로고    scopus 로고
    • Multiclass least-square support vector machines for analog modulation classification
    • Abdulkadir S. Multiclass least-square support vector machines for analog modulation classification. Expert System with Applications 2009, 36:6681-6685.
    • (2009) Expert System with Applications , vol.36 , pp. 6681-6685
    • Abdulkadir, S.1
  • 53
    • 84894270367 scopus 로고    scopus 로고
    • BCI Competition III.
    • BCI Competition III. http://www.bbci.de/competition/iii.
  • 55
    • 44349107795 scopus 로고    scopus 로고
    • Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)
    • Wu W., Gao X., Hong B., Gao S. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Transactions on Biomedical Engineering 2008, 55:1733.
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , pp. 1733
    • Wu, W.1    Gao, X.2    Hong, B.3    Gao, S.4
  • 56
    • 80055040385 scopus 로고    scopus 로고
    • Clustering technique-based least square support vector machine for EEG signal classification
    • Siuly Y., Li Y., Wen P. Clustering technique-based least square support vector machine for EEG signal classification. Computer Methods and Programs in Biomedicine 2010, 104(3):358-372.
    • (2010) Computer Methods and Programs in Biomedicine , vol.104 , Issue.3 , pp. 358-372
    • Siuly, Y.1    Li, Y.2    Wen, P.3
  • 58
    • 79551538302 scopus 로고    scopus 로고
    • Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
    • Lotte F., Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Transactions on Biomedical Engineering 2011, 58:355-362.
    • (2011) IEEE Transactions on Biomedical Engineering , vol.58 , pp. 355-362
    • Lotte, F.1    Guan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.