메뉴 건너뛰기




Volumn , Issue , 2010, Pages 34-39

Analysis and classification of EEG signals using a hybrid clustering technique

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; CLUSTERING TECHNIQUES; CURRENT RESEARCHES; EEG SIGNALS; EPILEPTIC PATIENTS; EXTRACTING FEATURES; HEALTHY SUBJECTS; HYBRID APPROACH; HYBRID CLUSTERING; LEAST SQUARE SUPPORT VECTOR MACHINES; MENTAL IMAGERY; SEIZURE ACTIVITY; SVM CLASSIFIERS;

EID: 77957802915     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2010.5558875     Document Type: Conference Paper
Times cited : (31)

References (19)
  • 1
    • 84919475542 scopus 로고    scopus 로고
    • Diagnosis and classification of epilepsy risk level from EEG signals using fuzzy aggregation techniques
    • (advanced online publication: 12 February)
    • R. Sukanesh and R. Harikumar, "Diagnosis and classification of epilepsy risk level from EEG signals using fuzzy aggregation techniques," in Engineering Letters, 14:1, EL-14-1-17 (advanced online publication: 12 February 2007).
    • (2007) Engineering Letters , vol.14 , Issue.1
    • Sukanesh, R.1    Harikumar, R.2
  • 2
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • N. Hazarika, J. Z. Chen, A.C. Tsoi and A. Sergejew, "Classification of EEG Signals Using the Wavelet Transform," Signal Process, 59 (1), 61-72, 1997.
    • (1997) Signal Process , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 3
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou and N. Dadmehr, "Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform," J. Neurosci. Methods, vol. 123, no. 1, pp. 69-87, 2003.
    • (2003) Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 5
    • 34047124754 scopus 로고    scopus 로고
    • (Nov.) [Online]
    • EEG time series (epileptic data) (2005, Nov.) [Online], http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html
    • (2005) EEG Time Series (epileptic Data)
  • 7
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert System with Applications, 32 (2007), 1084-1093.
    • (2007) Expert System with Applications , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 8
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast fourier transform
    • K. Polat, and S. Gunes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Applied Mathematics and Computation, 187 (2007), 1017-1026.
    • (2007) Applied Mathematics and Computation , vol.187 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 9
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EEG signals
    • S. Chandaka, A. Chatterjee and S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals," Expert System with Applications, 36(2009), 1329-1336.
    • Expert System with Applications , vol.36 , Issue.2009 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 10
    • 69049087866 scopus 로고    scopus 로고
    • Classification of EEG signals using sampling techniques and least square support vector machines
    • Siuly, Y. Li and P. Wen, "Classification of EEG signals using sampling techniques and least square support vector machines," RSKT 2009, LNCS 5589, pp. 375-382, 2009.
    • (2009) RSKT 2009, LNCS 5589 , pp. 375-382
    • Li, S.Y.1    Wen, P.2
  • 11
    • 70349472753 scopus 로고    scopus 로고
    • Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
    • E.D. Ubeyli, "Least square support vector machine employing model-based methods coefficients for analysis of EEG signals," Expert System with Applications, 37 (2010), 233-239.
    • (2010) Expert System with Applications , vol.37 , pp. 233-239
    • Ubeyli, E.D.1
  • 12
    • 77957764032 scopus 로고    scopus 로고
    • V.[online]. Available
    • S. Chiappa, and J.R. Millán, (2005) Data Set V.[online]. Available: http://ida.first.fraunhofer.de/projects/ bci/competition-iii/desc-V.html
    • (2005)
    • Chiappa, S.1    Millán, J.R.2
  • 14
    • 33750704262 scopus 로고    scopus 로고
    • PSO-based hyper-parameters selection for LS-SVM classifiers
    • LNCS 4233
    • X.C. Guo, Y.C. Liang, C.G. Wu and C.Y. Wang, "PSO-based hyper-parameters selection for LS-SVM classifiers," ICONIP 2006, Part II, LNCS 4233, pp. 1138-1147, 2006.
    • (2006) ICONIP 2006 , Issue.PART II , pp. 1138-1147
    • Guo, X.C.1    Liang, Y.C.2    Wu, C.G.3    Wang, C.Y.4
  • 15
    • 67349154400 scopus 로고    scopus 로고
    • Modelling of a new solar air heater through least-square support vector machines
    • H. Esen, F. Ozgen, M. Esen and A. Sengur, "Modelling of a new solar air heater through least-square support vector machines," Expert system with applications, 36(2009), 10673-10682.
    • Expert System with Applications , vol.36 , Issue.2009 , pp. 10673-10682
    • Esen, H.1    Ozgen, F.2    Esen, M.3    Sengur, A.4
  • 16
    • 43449099081 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters 21, 861874, 2006.
    • (2006) Pattern Recognition Letters , vol.21 , pp. 861874
    • Fawcett, T.1
  • 17
    • 0035682573 scopus 로고    scopus 로고
    • Indication of non linear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, "Indication of Non Linear Deterministic and Finite-Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on Recording Region and Brain State," Physical Review E, vol. 64, 061907, 2001.
    • (2001) Physical Review E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 18
    • 10944237806 scopus 로고    scopus 로고
    • On the need for online learning in brain-computer interfaces
    • J.R. Millán, "On the need for online learning in brain-computer interfaces," in Proc. 2004 Int. Joint Conf. Neural networks, Vol. 4, 2877-2882.
    • Proc. 2004 Int. Joint Conf. Neural Networks , vol.4 , pp. 2877-2882
    • Millán, J.R.1
  • 19
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • E.D. Ubeyli, "Wavelet/mixture of experts network structure for EEG signals classification," Expert System with Applications, 34 (2008), 1954-1962.
    • (2008) Expert System with Applications , vol.34 , pp. 1954-1962
    • Ubeyli, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.