메뉴 건너뛰기




Volumn 78, Issue 2, 2005, Pages 87-99

Classification of EEG signals using neural network and logistic regression

Author keywords

EEG; Epileptic seizure; Lifting based discrete wavelet transform (LBDWT); Logistic regression (LR); Multilayer perceptron neural network (MLPNN)

Indexed keywords

ALGORITHMS; DISEASES; MATHEMATICAL MODELS; NEURAL NETWORKS; REGRESSION ANALYSIS; SIGNAL PROCESSING; STATISTICAL METHODS; WAVELET TRANSFORMS;

EID: 17744374301     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2004.10.009     Document Type: Article
Times cited : (446)

References (41)
  • 1
    • 0034796777 scopus 로고    scopus 로고
    • AR spectral analysis of EEG signals by using maximum likelihood estimation
    • I. Guler, M.K. Kiymik, M. Akin, and A. Alkan AR spectral analysis of EEG signals by using maximum likelihood estimation Comput. Biol. Med. 31 2001 441 450
    • (2001) Comput. Biol. Med. , vol.31 , pp. 441-450
    • Guler, I.1    Kiymik, M.K.2    Akin, M.3    Alkan, A.4
  • 2
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr Analysis of EEG records in an epileptic patient using wavelet transform J. Neurosci. Methods 123 2003 69 87
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 3
    • 0037107846 scopus 로고    scopus 로고
    • Brain electrical activity analysis using wavelet-based informational tools
    • O.A. Rosso, M.T. Martin, and A. Plastino Brain electrical activity analysis using wavelet-based informational tools Physica A 313 2002 587 608
    • (2002) Physica a , vol.313 , pp. 587-608
    • Rosso, O.A.1    Martin, M.T.2    Plastino, A.3
  • 4
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • N. Hazarika, J.Z. Chen, A.C. Tsoi, and A. Sergejew Classification of EEG signals using the wavelet transform Signal Process. 59 1 1997 61 72
    • (1997) Signal Process. , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 7
    • 0345356528 scopus 로고    scopus 로고
    • Estimation of the self-similarity parameter using the wavelet transform
    • S. Soltani, P. Simard, and D. Boichu Estimation of the self-similarity parameter using the wavelet transform Signal Process. 84 2004 117 123
    • (2004) Signal Process. , vol.84 , pp. 117-123
    • Soltani, S.1    Simard, P.2    Boichu, D.3
  • 8
    • 0344517072 scopus 로고    scopus 로고
    • Functions and sources of event-related EEG alpha oscillations studied with the wavelet transform
    • R.Q. Quiroga, and M. Schurmann Functions and sources of event-related EEG alpha oscillations studied with the wavelet transform Clin. Neurophysiol. 110 1999 643 654
    • (1999) Clin. Neurophysiol. , vol.110 , pp. 643-654
    • Quiroga, R.Q.1    Schurmann, M.2
  • 9
    • 0034793856 scopus 로고    scopus 로고
    • Electroencephalogram analysis using fast wavelet transform
    • Z. Zhang, H. Kawabata, and Z.Q. Liu Electroencephalogram analysis using fast wavelet transform Comput. Biol. Med. 31 2001 429 440
    • (2001) Comput. Biol. Med. , vol.31 , pp. 429-440
    • Zhang, Z.1    Kawabata, H.2    Liu, Z.Q.3
  • 10
  • 11
    • 0037706902 scopus 로고    scopus 로고
    • Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation
    • A. Folkers, F. Mosch, T. Malina, and U.G. Hofmann Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation Neurocomputing 52-54 2003 247 254
    • (2003) Neurocomputing , vol.52-54 , pp. 247-254
    • Folkers, A.1    Mosch, F.2    Malina, T.3    Hofmann, U.G.4
  • 12
    • 0037410182 scopus 로고    scopus 로고
    • Wavelet analysis of generalized tonic-clonic epileptic seizures
    • O.A. Rosso, S. Blanco, and A. Rabinowicz Wavelet analysis of generalized tonic-clonic epileptic seizures Signal Process. 83 2003 1275 1289
    • (2003) Signal Process. , vol.83 , pp. 1275-1289
    • Rosso, O.A.1    Blanco, S.2    Rabinowicz, A.3
  • 13
    • 0032796009 scopus 로고    scopus 로고
    • Wavelet analysis of neuroelectric waveforms: A conceptual tutorial
    • V.J. Samar, A. Bopardikar, R. Rao, and K. Swartz Wavelet analysis of neuroelectric waveforms: a conceptual tutorial Brain Lang. 66 1999 7 60
    • (1999) Brain Lang. , vol.66 , pp. 7-60
    • Samar, V.J.1    Bopardikar, A.2    Rao, R.3    Swartz, K.4
  • 14
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Y.U. Khan, and J. Gotman Wavelet based automatic seizure detection in intracerebral electroencephalogram Clin. Neurophysiol. 114 2003 898 908
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 15
    • 0034887405 scopus 로고    scopus 로고
    • Wavelet transform in the analysis of the frequency composition of evoked potentials
    • R.Q. Quiroga, O.W. Sakowitz, E. Basar, and M. Schurmann Wavelet transform in the analysis of the frequency composition of evoked potentials Brain Res. Protoc. 8 2001 16 24
    • (2001) Brain Res. Protoc. , vol.8 , pp. 16-24
    • Quiroga, R.Q.1    Sakowitz, O.W.2    Basar, E.3    Schurmann, M.4
  • 16
    • 0032190346 scopus 로고    scopus 로고
    • Forecasting generalized epileptic seizures from the eeg signal by wavelet analysis and dynamic unsupervised fuzzy clustering
    • A.B. Geva, and D.H. Kerem Forecasting generalized epileptic seizures from the eeg signal by wavelet analysis and dynamic unsupervised fuzzy clustering IEEE Trans. Biomed. Eng. 45 10 1998 1205 1216
    • (1998) IEEE Trans. Biomed. Eng. , vol.45 , Issue.10 , pp. 1205-1216
    • Geva, A.B.1    Kerem, D.H.2
  • 17
    • 3242718583 scopus 로고    scopus 로고
    • Electrocardiogram signals de-noising using lifting-based discrete wavelet transform
    • E. Ercelebi Electrocardiogram signals de-noising using lifting-based discrete wavelet transform Comput. Biol. Med. 34 6 2004 479 493
    • (2004) Comput. Biol. Med. , vol.34 , Issue.6 , pp. 479-493
    • Ercelebi, E.1
  • 18
    • 0037209737 scopus 로고    scopus 로고
    • Second generation wavelet transform-based pitch period estimation and voiced/unvoiced decision for speech signals
    • E. Ercelebi Second generation wavelet transform-based pitch period estimation and voiced/unvoiced decision for speech signals Appl. Acoustics 64 2003 25 41
    • (2003) Appl. Acoustics , vol.64 , pp. 25-41
    • Ercelebi, E.1
  • 19
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • N. Pradhan, P.K. Sadasivan, and G.R. Arunodaya Detection of seizure activity in EEG by an artificial neural network: a preliminary study Comput. Biomed. Res. 29 1996 303 313
    • (1996) Comput. Biomed. Res. , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 20
    • 0030273681 scopus 로고    scopus 로고
    • An adaptive structure neural network with application to EEG automatic seizure detection
    • W. Weng, and K. Khorasani An adaptive structure neural network with application to EEG automatic seizure detection Neural Netw. 9 1996 1223 1240
    • (1996) Neural Netw. , vol.9 , pp. 1223-1240
    • Weng, W.1    Khorasani, K.2
  • 21
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG
    • J. Gotman Automatic recognition of epileptic seizures in the EEG Electroencephalogr. Clin. Neurophysiol. 54 1982 530 540
    • (1982) Electroencephalogr. Clin. Neurophysiol. , vol.54 , pp. 530-540
    • Gotman, J.1
  • 22
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • A. Petrosian, D. Prokhorov, R. Homan, R. Dashei, and D. Wunsch Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG Neurocomputing 30 2000 201 218
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 24
    • 0034473380 scopus 로고    scopus 로고
    • Using time-dependent neural Networks for EEG classification
    • E. Haselsteiner, and G. Pfurtscheller Using time-dependent neural Networks for EEG classification IEEE Trans. Rehab. Eng. 8 2000 457 463
    • (2000) IEEE Trans. Rehab. Eng. , vol.8 , pp. 457-463
    • Haselsteiner, E.1    Pfurtscheller, G.2
  • 26
    • 0031029383 scopus 로고    scopus 로고
    • A Patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device
    • H. Qu, and J. Gotman A Patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device IEEE Trans. Biomed. Eng. 44 1997 115 122
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , pp. 115-122
    • Qu, H.1    Gotman, J.2
  • 27
    • 0036232561 scopus 로고    scopus 로고
    • Electroencephalogram processing using neural Networks
    • C. Robert, J.F. Gaudy, and A. Limoge Electroencephalogram processing using neural Networks Clin. Neurophysiol. 113 2002 694 701
    • (2002) Clin. Neurophysiol. , vol.113 , pp. 694-701
    • Robert, C.1    Gaudy, J.F.2    Limoge, A.3
  • 28
    • 0034254452 scopus 로고    scopus 로고
    • The forward EEG solutions can be computed using artificial neural networks
    • M. Sun, and R.J. Sclabassi The forward EEG solutions can be computed using artificial neural networks IEEE Trans. Biomed. Eng. 47 2000 1044 1050
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 1044-1050
    • Sun, M.1    Sclabassi, R.J.2
  • 30
    • 30244489068 scopus 로고    scopus 로고
    • The lifting scheme: A custom-design construction of biorthogonal wavelets
    • W. Sweldens The lifting scheme: a custom-design construction of biorthogonal wavelets Appl. Comput. Harmon. Anal. 3 2 1996 186 200
    • (1996) Appl. Comput. Harmon. Anal. , vol.3 , Issue.2 , pp. 186-200
    • Sweldens, W.1
  • 31
    • 0032388955 scopus 로고    scopus 로고
    • The lifting scheme: A construction of second generation wavelets
    • W. Sweldens The lifting scheme: a construction of second generation wavelets SIAM J. Math. Anal. 29 2 1997 511 546
    • (1997) SIAM J. Math. Anal. , vol.29 , Issue.2 , pp. 511-546
    • Sweldens, W.1
  • 35
    • 0037298712 scopus 로고    scopus 로고
    • Comparison of logistic regression and neural network-based classifiers for bacterial growth
    • M. Hajmeer, and M.I.A. Basheer Comparison of logistic regression and neural network-based classifiers for bacterial growth Food Microbiol. 20 2003 43 55
    • (2003) Food Microbiol. , vol.20 , pp. 43-55
    • Hajmeer, M.1    Basheer, M.I.A.2
  • 36
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • S. Dreiseitl, and L. Ohno-Machado Logistic regression and artificial neural network classification models: a methodology review J. Biomed. Inform. 35 2002 352 359
    • (2002) J. Biomed. Inform. , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 37
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • I.A. Basheer, and M. Hajmeer Artificial neural networks: fundamentals, computing, design, and application J. Microbiol. Methods 43 2000 3 31
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 38
    • 0034283761 scopus 로고    scopus 로고
    • Efficient training and improved performance of multilayer perceptron in pattern classification
    • B.B. Chaudhuri, and U. Bhattacharya Efficient training and improved performance of multilayer perceptron in pattern classification Neurocomputing 34 2000 11 27
    • (2000) Neurocomputing , vol.34 , pp. 11-27
    • Chaudhuri, B.B.1    Bhattacharya, U.2
  • 41
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 6 1994 989 993
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.